Background: Taxonomic identification of wood specimens provides vital information for a wide variety of academic (e.g. paleoecology, cultural heritage studies) and commercial (e.
View Article and Find Full Text PDFTropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics.
View Article and Find Full Text PDFAn X-ray computed tomography (CT) toolchain is presented to obtain tree-ring width (TRW), maximum latewood density (MXD), other density parameters, and quantitative wood anatomy (QWA) data without the need for labor-intensive surface treatment or any physical sample preparation. The focus here is on increment cores and scanning procedures at resolutions ranging from 60 µm down to 4 µm. Three scales are defined at which wood should be looked at: (i) inter-ring scale, (ii) ring scale, i.
View Article and Find Full Text PDFCommon beech (Fagus sylvatica) is one of the most important deciduous tree species in European forests. However, climate-change-induced drought may threaten its dominant position. The Sonian Forest close to Brussels (Belgium) is home to some of the largest beech trees in the world.
View Article and Find Full Text PDFBackground And Aims: Heartwood plays an important role in maintaining the structural integrity of trees. Although its formation has long been thought to be driven solely by internal ageing processes, more recent hypotheses suggest that heartwood formation acts as a regulator of the tree water balance by modulating the quantity of sapwood. Testing both hypotheses would shed light on the potential ecophysiological nature of heartwood formation, a very common process in trees.
View Article and Find Full Text PDFWood identification is a key step in the enforcement of laws and regulations aimed at combatting illegal timber trade. Robust wood identification tools, capable of distinguishing a large number of timbers, depend on a solid database of reference material. Reference material for wood identification is typically curated in botanical collections dedicated to wood consisting of samples of secondary xylem of lignified plants.
View Article and Find Full Text PDFThe potential of whole genome duplication to increase plant biomass yield is well-known. In Arabidopsis tetraploids, an increase in biomass yield was accompanied by a reduction in lignin content and, as a result, a higher saccharification efficiency was achieved compared with diploid controls. Here, we evaluated whether the results obtained in Arabidopsis could be translated into poplar and whether the enhanced saccharification yield upon alkaline pretreatment of hairpin-downregulated () transgenic poplar could be further improved upon a whole genome duplication.
View Article and Find Full Text PDFThe distribution and good spreading of adhesive resins is critical for the wood-based panels industry. Full 3D non-destructive characterization is necessary, but methods are limited due to the chemical similarities between the resins and the wood fibers. For X-ray microtomography ([Formula: see text]CT), the doping of the resin with a highly attenuating contrast agent is necessary to visualize the resin distribution.
View Article and Find Full Text PDFMoisture performance is an important factor determining the resistance of wood-based building materials against fungal decay. Understanding how material porosity and chemistry affect moisture performance is necessary for their efficient use, as well as for product optimisation. In this study, three complementary techniques (X-ray computed tomography, infrared and low-field NMR spectroscopy) are applied to elucidate the influence of additives, manufacturing process and material structure on the liquid water absorption and desorption behaviour of a selection of wood-based panels, thermally modified wood and wood fibre insulation materials.
View Article and Find Full Text PDFBackground: The identification of tropical African wood species based on microscopic imagery is a challenging problem due to the heterogeneous nature of the composition of wood combined with the vast number of candidate species. Image classification methods that rely on machine learning can facilitate this identification, provided that sufficient training material is available. Despite the fact that the three main anatomical sections contain information that is relevant for species identification, current methods only rely on transverse sections.
View Article and Find Full Text PDFUnderstanding tree growth and carbon sequestration are of crucial interest to forecast the feedback of forests to climate change. To have a global understanding of the wood formation, it is necessary to develop new methodologies for xylogenesis measurements, valid across diverse wood structures and applicable to both angiosperms and gymnosperms. In this study, the authors present a new workflow to study xylogenesis using high-resolution X-ray computed tomography (HRXCT), which is generic and offers high potential for automatization.
View Article and Find Full Text PDFWe explored the timing of spring xylogenesis and its potential drivers in homogeneous mature forest stands in a temperate European region. Three species with contrasting leaf development dynamics and wood anatomy were studied: European beech, silver birch and pedunculate oak. Detailed phenological observations of xylogenesis and leaf phenology were performed from summer 2017 until spring 2018.
View Article and Find Full Text PDFPlant leaf stomata are the gatekeepers of the atmosphere-plant interface and are essential building blocks of land surface models as they control transpiration and photosynthesis. Although more stomatal trait data are needed to significantly reduce the error in these model predictions, recording these traits is time-consuming, and no standardized protocol is currently available. Some attempts were made to automate stomatal detection from photomicrographs; however, these approaches have the disadvantage of using classic image processing or targeting a narrow taxonomic entity which makes these technologies less robust and generalizable to other plant species.
View Article and Find Full Text PDFWe explored the inter-individual variability in bud-burst and its potential drivers, in homogeneous mature stands of temperate deciduous trees. Phenological observations of leaves and wood formation were performed weekly from summer 2017 to summer 2018 for pedunculate oak, European beech and silver birch in Belgium. The variability of bud-burst was correlated to previous' year autumn phenology (i.
View Article and Find Full Text PDFTraditionally, fungal growth dynamics were assessed manually, limiting the research to a few environmental conditions and/or fungal species. Fortunately, more automated ways of measurement are gaining momentum due to the availability of cheap imaging and processing equipment and the development of dedicated image analysis algorithms. In this paper, we use image analysis to assess the impact of environmental conditions on the growth dynamics of two economically important fungal species, and .
View Article and Find Full Text PDFCessation of xylem formation or wood growth (CWG) and onset of foliar senescence (OFS) are key autumn phenological events in temperate deciduous trees. Their timing is fundamental for the development and survival of trees, ecosystem nutrient cycling and the seasonal exchange of matter and energy between the biosphere and atmosphere, and affects the impact and feedback of forests to global change. A large-scale experimental effort and improved observational methods have allowed us to compare the timing of CWG and OFS for different deciduous tree species in Western Europe, particularly in silver birch, a pioneer species, and European beech, a late-succession species, at stands of different latitudes, of different levels of site fertility, for 2 years with contrasting meteorological and drought conditions, i.
View Article and Find Full Text PDFBackground: Acoustic emission (AE) sensing is in use since the late 1960s in drought-induced embolism research as a non-invasive and continuous method. It is very well suited to assess a plant's vulnerability to dehydration. Over the last couple of years, AE sensing has further improved due to progress in AE sensors, data acquisition methods and analysis systems.
View Article and Find Full Text PDFBackground And Aims: Tree rings, as archives of the past and biosensors of the present, offer unique opportunities to study influences of the fluctuating environment over decades to centuries. As such, tree-ring-based wood traits are capital input for global vegetation models. To contribute to earth system sciences, however, sufficient spatial coverage is required of detailed individual-based measurements, necessitating large amounts of data.
View Article and Find Full Text PDFMaintaining xylem water transport under drought is vital for plants, but xylem failure does occur when drought-induced embolisms form and progressively spread through the xylem. The hydraulic method is widely considered the gold standard to quantify drought-induced xylem embolism. The method determines hydraulic conductivity (Kh) in cut branch samples, dehydrated to specific drought levels, by pushing water through them.
View Article and Find Full Text PDFBackground And Aims: Wood traits are increasingly being used to document tree performance. In the Congo Basin, however, weaker seasonality causes asynchrony of wood traits between trees. Here, we monitor growth and phenology data to date the formation of traits.
View Article and Find Full Text PDFPurpose: Droughts are expected to become more intense and frequent. Mixed forests can be more resilient to extreme events, but are the individual trees in mixed forests also more resilient to drought?
Methods: We sampled 275 trees in 53 temperate forest stands in northern Belgium: monocultures, two-species mixtures, and the three-species mixture of Fagus sylvatica, Quercus robur, and Q. rubra.
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects.
View Article and Find Full Text PDF