Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software.
View Article and Find Full Text PDFThe surface free energy of the crystalline polyethylene (PE) is an important property related with wettability, adhesion, and crystal growth. We investigated the profiles of free energy of surface interactions in the fully thermalized crystalline PE during debonding and shearing with atomistic molecular dynamics simulations using steered molecular dynamics and umbrella sampling techniques. The stress profiles during debonding and shearing processes were also estimated and compared with those obtained from analogous deformation simulations.
View Article and Find Full Text PDFThe linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds.
View Article and Find Full Text PDFProtective equipment in civilian and military applications requires the use of polymer materials that are both stiff and tough over a wide range of strain rates. However, typical structural materials, like tightly cross-linked epoxies, are very brittle. Recent experiments demonstrated that cross-linked poly(dicyclopentadiene) (pDCPD) networks can circumvent this trade-off by providing structural properties such as a high glass transition temperature and glassy modulus, while simultaneously exhibiting excellent toughness and high-rate impact resistance.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
We model the mechanics of associating trivalent dendrimer network glasses with a focus on their energy dissipation properties. Various combinations of sticky bond (SB) strength and kinetics are employed. The toughness (work to fracture) of these systems displays a surprising deformation-protocol dependence; different association parameters optimize different properties.
View Article and Find Full Text PDFBiomacromolecules
September 2013
Cellulose nanofibrils are biocompatible nanomaterials derived from sustainable natural sources. We report hydrogelation of carboxylated cellulose nanofibrils with divalent or trivalent cations (Ca(2+), Zn(2+), Cu(2+), Al(3+), and Fe(3+)) and subsequent formation of interconnected porous nanofibril networks. The gels were investigated by dynamic viscoelastic measurements.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2013
A new particle-based bottom-up method to develop coarse-grained models of polymers is presented and applied to polystyrene. The multiscale coarse-graining (MS-CG) technique of Izvekov et al. [J.
View Article and Find Full Text PDFUsing quantum mechanics (QM) and classical force-field based molecular dynamics (FF), we have calculated the principle shock Hugoniot curves for numerous amorphous polymers including poly[methyl methacrylate] (PMMA), poly[styrene], polycarbonate, as well as both the amorphous and crystalline forms of poly[ethylene]. In the FF calculations, we considered a non-reactive force field (i.e.
View Article and Find Full Text PDFNear edge X-ray absorption fine structure (NEXAFS) coupled with molecular dynamics simulations were utilized to probe the orientation at the exposed surface of the polymer film for polystyrene type polymers with various pendant functional groups off the phenyl ring. For all the polymers, the surface was oriented so that the rings are nominally normal to the film surface and pointing outward from the surface. The magnitude of this orientation was small and dependent on the size of the pendant functional group.
View Article and Find Full Text PDFWe develop an alternative polymer model to capture entanglements within the dissipative particle dynamics (DPD) framework by using simplified bond-bond repulsive interactions to prevent bond crossings. We show that structural and thermodynamic properties can be improved by applying a segmental repulsive potential (SRP) that is a function of the distance between the midpoints of the segments, rather than the minimum distance between segments. The alternative approach, termed the modified segmental repulsive potential (mSRP), is shown to produce chain structures and thermodynamic properties that are similar to the softly repulsive, flexible chains of standard DPD.
View Article and Find Full Text PDFThe binding energy, density, and solubility of functionalized gold nanoparticles in a vacuum are computed using molecular dynamics simulations. Numerous parameters including surface coverage fraction, functional group (-CH(3), -OH, -NH(2)), and nanoparticle orientation are considered. The analysis includes computation of minimum interparticle binding distances and energies and an analysis of mechanisms that may contribute to changes in system potential energy.
View Article and Find Full Text PDF