Wade's rules are a well-established tool for the description of the geometry of inorganic clusters. Among others, they state that a decrease or increase in charge is always accompanied by a change in the number of skeletal electron pairs (SEPs). This work reports the synthesis of the first cationic chalcogenaboranes closo-[12-X-2-IPr-1-EBH]BF (IPr=1,3-(2,6-iPrCH)-imidazole-2-ylidene; X=H, I; E=S, Se 3 a/b, 4 a/b) featuring the same SEP count as their neutral precursors, EBH, but bearing a positive charge.
View Article and Find Full Text PDFA series of -tricarbollides based on 10,11-X-7-MeN--7,8,9-CBH (X = H, Cl, Br, I) and their protonated, i.e. cationic, counterparts, which have an extra H-bridge over the B10-B11 vector in the open pentagonal belt, were prepared.
View Article and Find Full Text PDFThe adaptive immune response critically hinges on the functionality of T cell receptors, governed by complex molecular mechanisms, including ubiquitination. In this study, we delved into the role of in T cell immunity, focusing on T cell-B cell conjugate formation and T cell activation. Using a CRISPR-Cas9 screening approach targeting deubiquitinases genes in Jurkat T cells, we identified BAP1 as a key positive regulator of T cell-B cell conjugate formation.
View Article and Find Full Text PDFInduction therapy followed by CD34 cell mobilisation and autologous transplantation represents standard of care for multiple myeloma (MM). However, the anti-CD38 monoclonal antibodies daratumumab and isatuximab have been associated with mobilisation impairment, yet the mechanism remains unclear. In this study, we investigated the effect of three different regimens (dara-VCd, isa-KRd and VTd) on CD34 cells using flow cytometry and transcriptomics.
View Article and Find Full Text PDFIn this study, we report a group of alkali metal aluminates bearing bis(organoamido)phosphane ligand. The starting complex {[PhP(NBu)]AlMe}Li·OEt (1) was prepared by stepwise deprotonation of the parent PhP(NHBu) by BuLi and AlMe. Further derivatization of aluminate 1 was performed by the virtual substitution of lithium -{[PhP(NBu)]AlMe}K (2), methyl substituents - {[PhP(NBu)]AlH}Li·THF (3), modification of steric bulk and induction effects on the phosphorus atom - {[BuP(-2,6-iPrCH)]AlMe}Li·(OEt) (4), and phosphorus atom oxidation state {[Ph(Y)P(NBu)]AlMe}Li (Y = O (5), S (6), Se (7), Te (8)).
View Article and Find Full Text PDFModern computational protocols based on the density functional theory (DFT) infer that polyhedral ten-vertex carboranes are key starting stationary states in obtaining ten-vertex cationic carboranes. The rearrangement of the bicapped square polyhedra into decaborane-like shapes with open hexagons in boat conformations is caused by attacks of N-heterocyclic carbenes (NHCs) on the motifs. Single-point computations on the stationary points found during computational examinations of the reaction pathways have clearly shown that taking the "experimental" NHCs into account requires the use of dispersion correction.
View Article and Find Full Text PDFGold(I) centers can form moderately strong (Au⋅⋅⋅H) hydrogen bonds with tertiary ammonium groups, as has been demonstrated in the 3AuCl (3 =1-(tert-butyl)-3-phenyl-4-(2-((dimethylammonio)methyl)phenyl)-1,2,4-triazol-5-ylidene) complex. However, similar hydrogen bonding interactions with isoelectronic silver(I) or copper(I) centers are unknown. Herein, we first explored whether the Au⋅⋅⋅H bond originally observed in 3AuCl can be strengthened by replacing Cl with Br or I.
View Article and Find Full Text PDFCrested wheatgrass (), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed.
View Article and Find Full Text PDFThree out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat.
View Article and Find Full Text PDFThe plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis.
View Article and Find Full Text PDF2-Benzhydryl-4-methyl-6-(1,1'-diphenyl-2-phenyl-ethyl)aniline was prepared by a three-step process. 2,6-Bis(benzhydryl)-4-methyl-aniline was protected by Schiff coupling, then benzylated and finally dealkylated by using hydrochloric acid and methanol. The resulting compound exhibits one of the highest buried volumes around the nitrogen atom of anilines prepared so far, but it reacts with phosphorus trichloride and triethylamine to give a monomeric chloro(imino)phosphine.
View Article and Find Full Text PDFProteins play a major role in the three-dimensional organization of nuclear genome and its function. While histones arrange DNA into a nucleosome fiber, other proteins contribute to higher-order chromatin structures in interphase nuclei, and mitotic/meiotic chromosomes. Despite the key role of proteins in maintaining genome integrity and transferring hereditary information to daughter cells and progenies, the knowledge about their function remains fragmentary.
View Article and Find Full Text PDFPolyhedral boranes and heteroboranes appear almost exclusively as neutral or anionic species, while the cationic ones are protonated at exoskeletal heteroatoms or they are instable. Here we report the reactivity of 10-vertex closo-dicarbadecaboranes with one or two equivalents of N-heterocyclic carbene to 10-vertex nido mono- and/or bis-carbene adducts, respectively. These complexes easily undergo a reaction with HCl to give cages of stable and water soluble 10-vertex nido-type cations with protonation in the form of a BHB bridge or 10-vertex closo-type cations containing one carbene ligand when originating from closo-1,10-dicarbadecaborane.
View Article and Find Full Text PDFCadmium is an environmental pollutant with high toxicity that negatively affects plant growth and development. To understand the molecular mechanisms of plant response to cadmium stress, we have performed a genome-wide transcriptome analysis on barley plants treated with an increased concentration of cadmium. Differential gene expression analysis revealed 10,282 deregulated transcripts present in the roots and 7,104 in the shoots.
View Article and Find Full Text PDFStructural maintenance of chromosome 5/6 (SMC5/6) complex is a crucial factor for preserving genome stability. Here, we show that mutants for several Arabidopsis (Arabidopsis thaliana) SMC5/6 complex subunits produce triploid offspring. This phenotype is caused by a meiotic defect leading to the production of unreduced male gametes.
View Article and Find Full Text PDFThe electrophilic substitution of icosahedral 1-SBH with methyl iodide has resulted in two B-functionalized thiaboranes, 7,12-I-2,3,4,5,6,8,9,10,11-(CH)-1--SB and 7,8,12-I-2,3,4,5,6,9,10,11-(CH)--1-SB, with the former being significantly predominant. These two icosahedral thiaboranes are the first cases of polysubstituted polyhedral boron clusters with another vertex that differs from B and C. Such polyfunctionalizations have increased the earlier observed thiaborane icosahedral barrier, not exhibiting any reactivity toward bases, unlike the parent thiaborane.
View Article and Find Full Text PDFB chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism.
View Article and Find Full Text PDFNon-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression.
View Article and Find Full Text PDFRye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool.
View Article and Find Full Text PDFGenomics studies in wild species of wheat have been limited due to the lack of references; however, new technologies and bioinformatics tools have much potential to promote genomic research. The wheat-Haynaldia villosa translocation line T6VS·6AL has been widely used as a backbone parent of wheat breeding in China. Therefore, revealing the genome structure of translocation chromosome 6VS·6AL will clarify how this chromosome formed and will help to determine how it affects agronomic traits.
View Article and Find Full Text PDFThe astonishing survival abilities of , one the earliest domesticated plants, are associated, among other things, to the highly effective replication stress response system which ensures smooth cell division and proper preservation of genomic information. The most crucial pathway here seems to be the ataxia telangiectasia-mutated kinase (ATM)/ataxia telangiectasia and Rad3-related kinase (ATR)-dependent replication stress response mechanism, also present in humans. In this article, we attempted to take an in-depth look at the dynamics of regeneration from the effects of replication inhibition and cell cycle checkpoint overriding causing premature chromosome condensation (PCC) in terms of DNA damage repair and changes in replication dynamics.
View Article and Find Full Text PDFStructural variations (SVs) such as copy number and presence-absence variations are polymorphisms that are known to impact genome composition at the species level and are associated with phenotypic variations. In the absence of a reference genome sequence, their study has long been hampered in wheat. The recent production of new wheat genomic resources has led to a paradigm shift, making possible to investigate the extent of SVs among cultivated and wild accessions.
View Article and Find Full Text PDFSeeds are complex biological systems comprising three genetically distinct tissues: embryo, endosperm, and maternal tissues (including seed coats and pericarp) nested inside one another. Cereal grains represent a special type of seeds, with the largest part formed by the endosperm, a specialized triploid tissue ensuring embryo protection and nourishment. We investigated dynamic changes in DNA content in three of the major seed tissues from the time of pollination up to the dry seed.
View Article and Find Full Text PDFBackground And Aims: Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes.
View Article and Find Full Text PDF