The combination of isochoric heating of solids by free-electron lasers (FELs) and in situ diagnostics by X-ray Thomson scattering (XRTS) allows for measurements of material properties at warm dense matter (WDM) conditions relevant for astrophysics, inertial confinement fusion, and materials science. In the case of metals, the FEL beam pumps energy directly into electrons with the lattice structure of ions being nearly unaffected. This leads to a unique transient state that gives rise to a set of interesting physical effects, which can serve as a reliable testing platform for WDM theories.
View Article and Find Full Text PDFOptical femtosecond pump-probe experiments allow to measure the dynamics of ultrafast heating of metals with high accuracy. However, the theoretical analysis of such experiments is often complicated because of the indirect connection of the measured signal and the desired temperature transients. Establishing such a connection requires an accurate model of the optical constants of a metal, depending on both the electron temperature T and the lattice temperature T.
View Article and Find Full Text PDFWe present extensive new ab initio path integral Monte Carlo (PIMC) results for a variety of structural properties of warm dense hydrogen and beryllium. To deal with the fermion sign problem-an exponential computational bottleneck due to the antisymmetry of the electronic thermal density matrix-we employ the recently proposed [Y. Xiong and H.
View Article and Find Full Text PDFThe accurate description of non-ideal quantum many-body systems is of prime importance for a host of applications within physics, quantum chemistry, materials science, and related disciplines. At finite temperatures, the gold standard is given by path integral Monte Carlo (PIMC) simulations, which do not require any empirical input but exhibit an exponential increase in the required computation time for Fermionic systems with an increase in system size . Very recently, computing Fermionic properties without this bottleneck based on PIMC simulations of fictitious identical particles has been suggested.
View Article and Find Full Text PDFHydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities.
View Article and Find Full Text PDFThe ab initio path integral Monte Carlo (PIMC) method is one of the most successful methods in statistical physics, quantum chemistry and related fields, but its application to quantum degenerate Fermi systems is severely hampered by an exponential computational bottleneck: the notorious fermion sign problem. Very recently, Xiong and Xiong [J. Chem.
View Article and Find Full Text PDFThe properties of hydrogen at warm dense matter (WDM) conditions are of high importance for the understanding of astrophysical objects and technological applications such as inertial confinement fusion. In this work, we present extensive ab initio path integral Monte Carlo results for the electronic properties in the Coulomb potential of a fixed ionic configuration. This gives us unique insights into the complex interplay between the electronic localization around the protons with their density response to an external harmonic perturbation.
View Article and Find Full Text PDFLinear-response time-dependent density functional theory (LR-TDDFT) simulations of disordered extended systems require averaging over different snapshots of ion configurations to minimize finite size effects due to the snapshot-dependence of the electronic density response function and related properties. We present a consistent scheme for the computation of the macroscopic Kohn-Sham (KS) density response function connecting an average over snapshot values of charge density perturbations to the averaged values of KS potential variations. This allows us to formulate the LR-TDDFT within the adiabatic (static) approximation for the exchange-correlation (XC) kernel for disordered systems, where the static XC kernel is computed using the direct perturbation method [Moldabekov et al.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2023
Rigorous diagnostics of experiments with warm dense matter are notoriously difficult. A key method is X-ray Thomson scattering (XRTS), but the interpretation of XRTS measurements is usually based on theoretical models that entail various approximations. Recently, Dornheim [ , 7911 (2022)] introduced a new framework for temperature diagnostics of XRTS experiments that is based on imaginary-time correlation functions.
View Article and Find Full Text PDFWe study the linear energy response of the uniform electron gas to an external harmonic perturbation with a focus on resolving different contributions to the total energy. This has been achieved by carrying out highly accurate ab initio path integral Monte Carlo (PIMC) calculations for a variety of densities and temperatures. We report a number of physical insights into effects such as screening and the relative importance of kinetic and potential energies for different wave numbers.
View Article and Find Full Text PDFWe assess the accuracy of common hybrid exchange-correlation (XC) functionals (PBE0, PBE0-1/3, HSE06, HSE03, and B3LYP) within the Kohn-Sham density functional theory for the harmonically perturbed electron gas at parameters relevant for the challenging conditions of the warm dense matter. Generated by laser-induced compression and heating in the laboratory, the warm dense matter is a state of matter that also occurs in white dwarfs and planetary interiors. We consider both weak and strong degrees of density inhomogeneity induced by the external field at various wavenumbers.
View Article and Find Full Text PDFWe combine ab initio path integral Monte Carlo (PIMC) simulations with fixed ion configurations from density functional theory molecular dynamics (DFT-MD) simulations to solve the electronic problem for hydrogen under warm dense matter conditions [Böhme et al., Phys. Rev.
View Article and Find Full Text PDFWe present an analysis of the static exchange-correlation (XC) kernel computed from hybrid functionals with a single mixing coefficient such as PBE0 and PBE0-1/3. We break down the hybrid XC kernels into the exchange and correlation parts using the Hartree-Fock functional, the exchange-only PBE, and the correlation-only PBE. This decomposition is combined with exact data for the static XC kernel of the uniform electron gas and an Airy gas model within a subsystem functional approach.
View Article and Find Full Text PDFThe electronic exchange─correlation (XC) kernel constitutes a fundamental input for the estimation of a gamut of properties such as the dielectric characteristics, the thermal and electrical conductivity, or the response to an external perturbation. In this work, we present a formally exact methodology for the computation of the system specific static XC kernel exclusively within the framework of density functional theory (DFT) and without employing functional derivatives─no external input apart from the usual XC-functional is required. We compare our new results with exact quantum Monte Carlo (QMC) data for the archetypical uniform electron gas model under both ambient and warm dense matter conditions.
View Article and Find Full Text PDFThe experimental investigation of matter under extreme densities and temperatures, as in astrophysical objects and nuclear fusion applications, constitutes one of the most active frontiers at the interface of material science, plasma physics, and engineering. The central obstacle is given by the rigorous interpretation of the experimental results, as even the diagnosis of basic parameters like the temperature T is rendered difficult at these extreme conditions. Here, we present a simple, approximation-free method to extract the temperature of arbitrarily complex materials in thermal equilibrium from X-ray Thomson scattering experiments, without the need for any simulations or an explicit deconvolution.
View Article and Find Full Text PDFExtreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and HO systems, respectively.
View Article and Find Full Text PDFThe properties of hydrogen under extreme conditions are important for many applications, including inertial confinement fusion and astrophysical models. A key quantity is given by the electronic density response to an external perturbation, which is probed in x-ray Thomson scattering experiments-the state of the art diagnostics from which system parameters like the free electron density n_{e}, the electronic temperature T_{e}, and the charge state Z can be inferred. In this work, we present highly accurate path integral Monte Carlo results for the static electronic density response of hydrogen.
View Article and Find Full Text PDFThe rigorous description of correlated quantum many-body systems constitutes one of the most challenging tasks in contemporary physics and related disciplines. In this context, a particularly useful tool is the concept of effective pair potentials that take into account the effects of the complex many-body medium consistently. In this work, we present extensive, highly accurate ab initio path integral Monte Carlo (PIMC) results for the effective interaction and the effective force between two electrons in the presence of the uniform electron gas.
View Article and Find Full Text PDFWe explore a new formalism to study the nonlinear electronic density response based on Kohn-Sham density functional theory (KS-DFT) at partially and strongly quantum degenerate regimes. It is demonstrated that the KS-DFT calculations are able to accurately reproduce the available path integral Monte Carlo simulation results at temperatures relevant for warm dense matter research. The existing analytical results for the quadratic and cubic response functions are rigorously tested.
View Article and Find Full Text PDFMaterials (Basel)
March 2022
The rate of energy transfer between electrons and phonons is investigated by a first-principles framework for electron temperatures up to Te = 50,000 K while considering the lattice at ground state. Two typical but differently complex metals are investigated: aluminum and copper. In order to reasonably take the electronic excitation effect into account, we adopt finite temperature density functional theory and linear response to determine the electron temperature-dependent Eliashberg function and electron density of states.
View Article and Find Full Text PDFDue to its nature as a strongly correlated quantum liquid, ultracold helium is characterized by the nontrivial interplay of different physical effects. Bosonic [Formula: see text] exhibits superfluidity and Bose-Einstein condensation. Its physical properties have been accurately determined on the basis of ab initio path integral Monte Carlo (PIMC) simulations.
View Article and Find Full Text PDFWe carry out extensive direct path integral Monte Carlo (PIMC) simulations of the uniform electron gas (UEG) at finite temperature for different values of the spin-polarization ξ. This allows us to unambiguously quantify the impact of spin effects on the momentum distribution function n(k) and related properties. We find that interesting physical effects like the interaction-induced increase in the occupation of the zero-momentum state n(0) substantially depend on ξ.
View Article and Find Full Text PDFWarm dense matter (WDM) has emerged as one of the frontiers of both experimental physics and theoretical physics and is a challenging traditional concept of plasma, atomic, and condensed-matter physics. While it has become common practice to model correlated electrons in WDM within the framework of Kohn-Sham density functional theory, quantitative benchmarks of exchange-correlation (XC) functionals under WDM conditions are yet incomplete. Here, we present the first assessment of common XC functionals against exact path-integral Monte Carlo calculations of the harmonically perturbed thermal electron gas.
View Article and Find Full Text PDFThe ab initio path integral Monte Carlo (PIMC) approach is one of the most successful methods in quantum many-body theory. A particular strength of this method is its straightforward access to imaginary-time correlation functions (ITCFs). For example, the well-known density-density ITCF F(q, τ) allows one to estimate the linear response of a given system for all wave vectors q from a single simulation of the unperturbed system.
View Article and Find Full Text PDFAb initio quantum Monte Carlo methods, in principle, allow for the calculation of exact properties of correlated many-electron systems but are, in general, limited to the simulation of a finite number of electrons N under periodic boundary conditions. Therefore, an accurate theory of finite-size effects is indispensable to bridge the gap to realistic applications in the thermodynamic limit. In this work, we revisit the uniform electron gas at finite temperature, as it is relevant to contemporary research, e.
View Article and Find Full Text PDF