Publications by authors named "Jan Voogd"

Agricultural practices are causing a variety of environmental impacts such as emissions of ammonia (NH) and greenhouse gases (GHG), and leaching and runoff of nutrients to groundwater and surface water. Measures need to be taken to achieve environmental targets set in European agreements and directives, such as the Birds and Habitats Directives, Nitrates Directive, Water Framework Directive and Fit for 55 package. To explore solutions for these issues an integral approach is needed, in which synergies between measures are included and pollution swapping is avoided.

View Article and Find Full Text PDF

To gain insight in the environmental impacts of crop, soil and nutrient management, an integrated model framework INITIATOR was developed predicting: (i) emissions of ammonia (NH) and greenhouse gases (GHG) from agriculture, including animal husbandry and crop production and (ii) accumulation, leaching and runoff of carbon, nutrients (nitrogen, N, phosphorus, P, and base cations) and metals in or from soils to groundwater and surface water in the Netherlands. Key processes in soil are included by linear or non-linear process formulations to maintain transparency and to enable data availability for spatially explicit application from field up to national level. Calculated national trends in nutrient losses over 2000-2020 compared well with independent estimates and showed a reduction in N and P input of 26 to 33 %, whereas the surplus declined by 33 % for N and 86 % for P due to increased crop yields and reduced inputs.

View Article and Find Full Text PDF

Gerbrandus Jelgersma published extensively on the (pathological) anatomy of the cerebellum between 1886 and 1934. Based on his observations on the double innervation of the Purkinje cells, he formulated a hypothesis on the function of the cerebellum. Both afferent systems of the cerebellum, the mossy fiber-parallel fiber system and the climbing fibers terminate on the Purkinje cell dendrites.

View Article and Find Full Text PDF

Agricultural production in the EU has increased strongly since the 1940s, partly driven by increased nitrogen (N) fertiliser and manure inputs. Increased N inputs and associated losses, however, adversely affect air and water quality, with widespread impacts on terrestrial and aquatic ecosystems and human health. Managing these impacts requires knowledge on 'safe boundaries' for N inputs, i.

View Article and Find Full Text PDF

In this paper, we study who first used the Latin anatomical term "cerebellum" for the posterior part of the brain. The suggestion that this term was introduced by Leonardo da Vinci is unlikely. Just before the start of the da Vinci era in the fifteenth century, several authors referred to the cerebellum as "cerebri posteriorus.

View Article and Find Full Text PDF

Spatially detailed information on agricultural nitrogen (N) budgets is relevant to identify regions where there is a need for a reduction in inputs in view of various forms of N pollution. However, at the scale of the European Union, there is a lack of consistent, reliable, high spatial resolution data necessary for the calculation of regional N losses. To gain insight in the reduction in uncertainty achieved by using higher spatial resolution input data.

View Article and Find Full Text PDF

The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit, and ferret, using tracing, immunohistological and electrophysiological approaches.

View Article and Find Full Text PDF

In the original version of this paper, the Title should have been written with "A Consensus paper" to read "Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper".

View Article and Find Full Text PDF

This chapter is concerned with ideas on the function, structure, and pathology that shaped our present knowledge of the cerebellum. One of the main themes in its early history is its localization subtentorially, leading to misattributions due to clinical observations in trauma and lesion experiments that caused collateral damage to the brainstem. Improvement of techniques led to the insight that it plays a role in movement control (Rolando) or coordination (Flourens).

View Article and Find Full Text PDF

The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject.

View Article and Find Full Text PDF

Otto Deiters (1834-1863) was a promising neuroscientist who, like Ferdinando Rossi, died too young. His notes and drawings were posthumously published by Max Schultze in the book "Untersuchungen über Gehirn und Rückenmark." The book is well-known for his dissections of nerve cells, showing the presence of multiple dendrites and a single axon.

View Article and Find Full Text PDF

Our knowledge of the modular organization of the cerebellum and the sphere of influence of these modules still presents large gaps. Here I will review these gaps against our present anatomical and physiological knowledge of these systems.

View Article and Find Full Text PDF

Up till the 1840s, gross dissection was the only method available to study the tracts and fascicles of the white matter of the human brain. This changed dramatically with the introduction by Stilling (1842, 1843, 1846) of the microscopy of serial sections and his demonstration of the discriminative power of this method. The decussation of the brachium conjunctivum (the superior cerebellar peduncle) (International Anatomical Terminology (1998)) originally was known as the horseshoe-shaped commissure of Wernekinck.

View Article and Find Full Text PDF

Cerebellar zones were there, of course, before anyone noticed them. Their history is that of young people, unhindered by preconceived ideas, who followed up their observations with available or new techniques. In the 1960s of the last century, the circumstances were fortunate because three groups, in Leiden, Lund, and Bristol, using different approaches, stumbled on the same zonal pattern in the cerebellum of the cat.

View Article and Find Full Text PDF

In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively.

View Article and Find Full Text PDF

The chick is a well-understood developmental model of cerebellar pattern formation,but we know much less about the patterning of the adult chicken cerebellum. Therefore an expression study of two Purkinje cell stripe antigens-zebrin II/aldolase C and phospholipase Cbeta4 (PLCbeta4)-has been carried out in the adult chicken (Gallus domesticus). The mammalian cerebellar cortex is built around transverse expression domains ("transverse zones"), each of which is further subdivided into parasagittally oriented stripes.

View Article and Find Full Text PDF

Classically, mossy fiber and climbing fiber terminals are regarded as having very different spatial distributions in the cerebellar cortex. However, previous anatomical studies have not studied these two major cerebellar inputs with sufficient resolution to confirm this assumption. Here, we examine the detailed pattern of collateralization of both types of cerebellar afferent using small injections of the bidirectional tracer cholera toxin b subunit into the posterior cerebellum.

View Article and Find Full Text PDF

The zones of the flocculus have been mapped in many species with a noticeable exception, the mouse. Here, the functional map of the mouse was constructed via extracellular recordings followed by tracer injections of biotinylated-dextran-amine and immunohistochemistry for heat-shock protein-25. Zones were identified based on the Purkinje cell complex spike modulation occurring in response to optokinetic stimulation.

View Article and Find Full Text PDF
Oculomotor cerebellum.

Prog Brain Res

December 2008

The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus.

View Article and Find Full Text PDF

This study provides a detailed anatomical description of the relation between olivo-cortico-nuclear modules of the intermediate cerebellum of the rat and the intrinsic zebrin pattern of the Purkinje cells. Strips of climbing fibers were labeled using small injections of biotinylated dextran amine into either the medial or dorsal accessory olives, while, in some cases, simultaneous retrograde labeling of Purkinje cells was obtained using gold-lectin injections into selected parts of the interposed nuclei. Our data are represented in a new, highly detailed, cortical surface reconstruction of the zebrin pattern and in relation to the collateral labeling of the climbing fibers to the cerebellar nuclei.

View Article and Find Full Text PDF

The zonal organization of the corticonuclear and the olivocerebellar climbing fiber projections to the vermis of the cerebellum of the rat was compared to the pattern of zebrin-positive and zebrin-negative bands in material double-stained for zebrin II and for different anterograde tracers injected in subnuclei of the inferior olive, or retrograde tracers injected in the cerebellar and vestibular target nuclei of the Purkinje cells of the vermis. Projection zones A(1), A(X), X, B, C(X) in the vermis and A(2) (accessory A zone) and C(2) in the hemisphere were defined by their efferent corticonuclear and their afferent climbing fiber connections, and were found to share the same topographical framework with the zebrin pattern.

View Article and Find Full Text PDF
The human cerebellum.

J Chem Neuroanat

December 2003

This short review deals with observations on the gross morphology and internal structure of the human cerebellum, and with studies of cerebellar fiber connections in non-human primates. Attention is focussed on its gross anatomy, the zonal organization of the primate cerebellum, the brain stem, thalamic and cortical connections of the cerebellar nuclei and on the cortico-ponto-cerebellar pathway. The presence of important reciprocal nucleo-mesencephalo-olivary loops as part of the circuitry of the dentate and globose (posterior interposed) nuclei and their absence among the connections of other cerebellar nuclei is emphasized.

View Article and Find Full Text PDF