Semin Cancer Biol
October 2012
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound.
View Article and Find Full Text PDFProtein Expr Purif
October 2002
Fractions of three trypsin-like proteinases, TL I, TL II, and TL III, a chymotrypsin-like proteinase, CL, two carboxypeptidase A enzymes, CPA I and CPA II and two carboxypeptidase B enzymes, CPB I and CPB II, from Antarctic krill (Euphausia superba) have been characterized with respect to purity by the means of capillary electrophoresis, CE, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The masses of the trypsin-like and chymotrypsin-like proteinases were determined to be 25,020, 25,070, 25,060, and 26,260Da for TL I, TL II, TL III, and CL, respectively. The masses of the CPA enzymes are likely 23,170 and 23,260Da, whereas the CPB enzyme masses likely are 33,730 and 33,900Da.
View Article and Find Full Text PDF