Publications by authors named "Jan Vilim"

The fibroblast growth factors (FGF) family holds significant potential for addressing chronic diseases. Specifically, recombinant FGF18 shows promise in treating osteoarthritis by stimulating cartilage formation. However, recent phase 2 clinical trial results of sprifermin (recombinant FGF18) indicate insufficient efficacy.

View Article and Find Full Text PDF

Herein, we show how the merge of biocatalysis with flow chemistry aided by 3D-printing technologies can facilitate organic synthesis. This concept was exemplified for the reductive amination of benzaldehyde catalysed by co-immobilised amine dehydrogenase and formate dehydrogenase in a continuous flow micro-reactor. For this purpose, we investigated enzyme co-immobilisation by covalent binding, or ion-affinity binding, or entrapment.

View Article and Find Full Text PDF

Asymmetric catalytic cascade processes offer direct access to complex chiral molecules from simple substrates and in a single step. In biocatalysis, cascades are generally designed by combining multiple enzymes, each catalyzing individual steps of a sequence. Herein, we report a different strategy for biocascades based on a single multifunctional enzyme that can promote multiple stereoselective steps of a domino process by mastering distinct catalytic mechanisms of substrate activation in a sequential way.

View Article and Find Full Text PDF

A NADH-dependent engineered amine dehydrogenase from (LE-AmDH-v1) was applied together with a NADH-oxidase from (NOx) for the kinetic resolution of pharmaceutically relevant racemic α-chiral primary amines. The reaction conditions (e. g.

View Article and Find Full Text PDF

The neurotransmitter metabolite 3,4-dihydroxy-phenylglycolaldehyde (dopegal) damages neurons and the myocardium by protein cross-linking, resulting in conglomerations and cell death. We investigated this process on a synthetic scale, leading to the discovery of an Amadori-type rearrangement of dopegal in the reaction with several amino acids and neuropeptides. This alkylation also occurs with neurotransmitters, suggesting an influence of dopegal on neurochemical processes.

View Article and Find Full Text PDF

We report an unprecedented catalytically promiscuous activity of the copper-dependent enzyme galactose oxidase. The enzyme catalyses the one-pot conversion of alcohols into the related nitriles under mild reaction conditions in ammonium buffer, consuming ammonia as the source of nitrogen and dioxygen (from air at atmospheric pressure) as the only oxidant. Thus, this green method does not require either cyanide salts, toxic metals, or undesired oxidants in stoichiometric amounts.

View Article and Find Full Text PDF

Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol.

View Article and Find Full Text PDF