Micromachines (Basel)
December 2023
Three new methods for accurate electronic component positioning for thermoformed electronics are presented in this paper. To maintain the mechanical and electrical properties of printed-ink tracks, prevent deformation and stretching during thermoforming, and ensure reproducibility, the component positioning principle for all three proposed methods is based on keeping the temperature of some regions in the thermoplastic substrate less than the glass transition temperature of the thermoplastic carrier, to keep those regions resistant to plastic deformation. We have verified the accuracy of the different approaches by implementing these methods in a semi-sphere mold for positioning seven LEDs and one printed capacitive touch sensor.
View Article and Find Full Text PDFSurface functionalization with biological macromolecules is an important task for the development of sensor materials, whereby the interaction with other biological materials should be suppressed. In this work, we developed a novel multifunctional poly(2-ethyl-2-oxazoline)-dithiolane conjugate as a versatile linker for gold surface immobilization of amine-containing biomolecules, containing poly(2-ethyl-2-oxazoline) as antifouling polymer, dithiolane for surface immobilization, and activated esters for protein conjugation. First, a well-defined carboxylic acid containing copoly(2-ethyl-2-oxazoline) was synthesized by cationic ring-opening copolymerization of 2-ethyl-2-oxazoline with a methyl ester-containing 2-oxazoline monomer, followed by postpolymerization modifications.
View Article and Find Full Text PDFThe integration of assembled foils in injection-molded parts is a challenging step. Such assembled foils typically comprise a plastic foil on which a circuit board is printed and electronic components are mounted. Those components can detach during overmolding when high pressures and shear stresses prevail due to the injected viscous thermoplastic melt.
View Article and Find Full Text PDFDue to constant advancements in materials research, conductive textile-based materials have been used increasingly in textile-based wearables. However, due to the rigidity of electronics or the need for their encapsulation, conductive textile materials, such as conductive yarns, tend to break faster around transition areas than other parts of e-textile systems. Thus, the current work aims to find the limits of two conductive yarns woven into a narrow fabric at the electronics encapsulation transition point.
View Article and Find Full Text PDFDigital microfluidics (DMF) holds great potential for the alleviation of laboratory procedures in assisted reproductive technologies (ARTs). The electrowetting on dielectric (EWOD) technology provides dynamic culture conditions in vitro that may better mimic the natural embryo microenvironment. Thus far, EWOD microdevices have been proposed for in vitro gamete and embryo handling in mice and for analyzing the human embryo secretome.
View Article and Find Full Text PDFThe integration of structural electronics in injection-molded parts is a challenging step. The films-comprising of laminated stacks with electronics-are exposed to shear stresses and elevated temperatures by the molten thermoplastic. Hence, molding settings have a significant impact on the successful, damage-free manufacturing of such parts.
View Article and Find Full Text PDFMicromachines (Basel)
October 2022
Over-molding has been proposed in recent years as an integrated functional flexible circuit board in a plastic part. This method uses the conventional process for film insert technology. Over-molding has attracted significant attention across many industries due to its potential to deliver different electrical functions in a variety of different part geometries, especially in automotive interiors and home appliances.
View Article and Find Full Text PDFElectrical stimulation of gametes and embryos and on-chip manipulation of microdroplets of culture medium serve as promising tools for assisted reproductive technologies (ARTs). Thus far, dielectrophoresis (DEP), electrorotation (ER) and electrowetting on dielectric (EWOD) proved compatible with most laboratory procedures offered by ARTs. Positioning, entrapment and selection of reproductive cells can be achieved with DEP and ER, while EWOD provides the dynamic microenvironment of a developing embryo to better mimic the functions of the oviduct.
View Article and Find Full Text PDFSensors (Basel)
December 2021
Electronic textiles (e-textiles) and wearable computing have been emerging increasingly during the last decade. Since the market interest and predictions have grown, the research into increasing reliability and durability of wearables and e-textiles is developing rapidly. The washability of different integration methods and resistance to mechanical stress are the main obstacles being tackled.
View Article and Find Full Text PDFThe blue light-activated inhibitory opsin, stGtACR2, is gaining prominence as a neuromodulatory tool due its ability to shunt-inhibit neurons and is being frequently used inexperimentation. However, experiments involving stGtACR2 use longer durations of blue light pulses, which inadvertently heat up the local brain tissue and confound experimental results. Therefore, the heating effects of illumination parameters used foroptogenetic inhibition must be evaluated.
View Article and Find Full Text PDFConsidering the high prevalence of cartilage-associated pathologies, low self-repair capacity and limitations of current repair techniques, tissue engineering (TE) strategies have emerged as a promising alternative in this field. Three-dimensional culture techniques have gained attention in recent years, showing their ability to provide the most biomimetic environment for the cells under culture conditions, enabling the cells to fabricate natural, 3D functional microtissues (MTs). In this sense, the aim of this study was to generate, characterize and compare scaffold-free human hyaline and elastic cartilage-derived MTs (HC-MTs and EC-MTs, respectively) under expansion (EM) and chondrogenic media (CM).
View Article and Find Full Text PDFEpilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment.
View Article and Find Full Text PDFObjectives: In this paper, the effect of the position of the inlet and outlet microchannels on the flow profile and the geometry of the recognition chamber for sample pre-treatment in an electrochemical biosensor to be used in osteoporosis management were investigated.
Methods: All numerical computation presented in this work were performed using COMSOL Multiphysics and Fluent. Simulation was performed for a three-dimensional, incompressible Navier-Stokes flow and so explicit biphasic volume of fluid (VOF) equations were used.
Micromachines (Basel)
August 2018
Stretchable circuit technology, as the name implies, allows an electronic circuit to adapt to its surroundings by elongating when an external force is applied. Based on this, early authors proposed a straightforward metric: stretchability-the percentage length increase the circuit can survive while remaining functional. However, when comparing technologies, this metric is often unreliable as it is heavily design dependent.
View Article and Find Full Text PDFSensory polymer composites are highly desirable for applications such as in situ and real-time production processes and structural health monitoring, and for technologies that include human-machine interfaces for the next generation of Internet of Things. However, the development of these materials is still in its infancy: these materials have been reported, but the large-scale fabrication of polymer composites with versatile and customizable sensing capabilities has yet to be demonstrated. Here, we report on a scalable fabrication strategy that enables such materials by designing and integrating PCB technology-inspired large-area flexible sensor matrices into polymer composites.
View Article and Find Full Text PDFDrug development is currently hampered by the inability of animal experiments to accurately predict human response. While emerging organ on chip technology offers to reduce risk using microfluidic models of human tissues, the technology still mostly relies on end-point assays and biomarker measurements to assess tissue damage resulting in limited mechanistic information and difficulties to detect adverse effects occurring below the threshold of cellular damage. Here we present a sensor-integrated liver on chip array in which oxygen is monitored using two-frequency phase modulation of tissue-embedded microprobes, while glucose, lactate and temperature are measured in real time using microfluidic electrochemical sensors.
View Article and Find Full Text PDFMetal-elastomer interfacial systems, often encountered in stretchable electronics, demonstrate remarkably high interface fracture toughness values. Evidently, a large gap exists between the rather small adhesion energy levels at the microscopic scale ('intrinsic adhesion') and the large measured macroscopic work-of-separation. This energy gap is closed here by unravelling the underlying dissipative mechanisms through a systematic numerical/experimental multi-scale approach.
View Article and Find Full Text PDFThis study was designed to obtain covalently coupled conjugates as means for achieving higher stability and better coverage of the AuNPs by antibodies on the particle surface suitable for sensor performance enhancement. Starting by using a modified protocol, colloid gold solution, with mean AuNP core size of ~6 nm was synthesized. The protocol used for conjugation of AuNPs to osteocalcin antibody in this study relies on covalent and electrostatic attractions between constituents.
View Article and Find Full Text PDFThis article explains a step-wise protocol to develop an electrochemical sensor to quantify serum levels of C-telopeptide (CTX) crosslinks also known as crosslaps in a matter of minutes and with high level of accuracy. The technique needs only one-step (incubation) and can thus be used for point of care screening. Due to the excellent electrical properties of the as-prepared immunosensor, CTX levels were successfully measured from 1 to 1000 pg/mL.
View Article and Find Full Text PDFBiocompatible polymeric coatings for metallic stents are desired, as currently used materials present limitations such as deformation during degradation and exponential loss of mechanical properties after implantation. These concerns, together with the present risks of the drug-eluting stents, namely, thrombosis and restenosis, require new materials to be studied. For this purpose, novel poly(polyol sebacate)-derived polymers are investigated as coatings for metallic stents.
View Article and Find Full Text PDFThis research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines.
View Article and Find Full Text PDFMicrofluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information.
View Article and Find Full Text PDFWe introduce the concept of mechanically stretchable optical waveguides. The technology to fabricate these waveguides is based on a cost-efficient replication method, employing commercially available polydimethylsiloxane (PDMS) materials. Furthermore, VCSELs (λ = 850 nm) and photodiodes, embedded in a flexible package, were integrated with the waveguides to obtain a truly bendable, stretchable and mechanically deformable optical link.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects.
View Article and Find Full Text PDF