Publications by authors named "Jan Vanaverbeke"

Thousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion.

View Article and Find Full Text PDF

Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented.

View Article and Find Full Text PDF

The blue mussel Mytilus edulis is a widespread and abundant bivalve species along the North Sea with high economic and ecological importance as an engineer species. The shell of mussels is intensively colonized by microbial organisms that can produce significant quantities of nitrous oxide (NO), a potent greenhouse gas. To characterize the impacts of climate change on the composition, structure and functioning of microbial biofilms on the shell surface of M.

View Article and Find Full Text PDF

In this study, "artificial reef" (AR) impacts of offshore windfarms (OWFs) on the surrounding soft-sediments were investigated. Benthic grab samples were collected at nearby (37.5 m) and distant (500 or 350 m) positions from turbines of two Belgian OWFs (Belwind: monopiles and C-Power: jackets).

View Article and Find Full Text PDF

Large-scale offshore wind energy developments represent a major player in the energy transition but are likely to have (negative or positive) impacts on marine biodiversity. Wind turbine foundations and sour protection often replace soft sediment with hard substrates, creating artificial reefs for sessile dwellers. Offshore wind farm (OWF) furthermore leads to a decrease in (and even a cessation of) bottom trawling, as this activity is prohibited in many OWFs.

View Article and Find Full Text PDF

Increased pressures from human activities may cause cumulative ecological effects on marine ecosystems. Increasingly, the study of ecosystem services is applied in the marine environment to assess the full effects of human activities on the ecosystem and on the benefits it provides. However, in the marine environment, such integrated studies have yet to move from qualitative and score-based to fully quantitative assessments.

View Article and Find Full Text PDF

The presence and behaviour of bivalves can affect the functioning of seafloor sediments through the irrigation of deeper strata by feeding and respiring through siphonal channels. Here, we investigated the physiological response and consecutive impact on functioning and body condition of the white furrow shell Abra alba in three pH treatments (pH = 8.2, pH = 7.

View Article and Find Full Text PDF

The establishment of artificial hard substrates (i.e. offshore wind farms and oil and gas platforms) on marine soft sediments increases the available habitat for invertebrate communities that would otherwise be restricted to natural hard bottoms.

View Article and Find Full Text PDF

Over the last years, the development of offshore renewable energy installations such as offshore wind farms led to an increasing number of man-made structures in marine environments. Since 2009, benthic impact monitoring programs were carried out in wind farms installed in the southern North Sea. We collated and analyzed data sets from three major monitoring programs.

View Article and Find Full Text PDF

Ecosystem functions are driven by abiotic and biotic factors, but due to high collinearity of both, it is often difficult to disentangle the drivers of these ecosystem functions. We studied sedimentological and faunal controls of benthic organic matter mineralization, a crucial ecosystem process provided for by sediments of shelf seas. Subtidal benthic habitats representative of the wide permeability gradient found in the Belgian Part of the North Sea (Northeast Atlantic Shelf) were characterized in terms of sediment descriptors, macrofauna, and sediment biogeochemistry was estimated.

View Article and Find Full Text PDF

The proliferation of offshore wind energy installations causes a local change in biodiversity because these structures become heavily colonised by large quantities of fouling fauna, attract large mobile crustaceans and fish, and alter the macrofaunal communities in the soft sediments surrounding the wind turbines. Here, we analysed the stable isotope signals (δC and δN) of the faunal communities associated with a wind turbine, its scour protection layer (SPL) and the surrounding soft sediments. We hypothesised that structural differences in community composition would be reflected in food web complexity and that resource partitioning could be one of the mechanisms contributing to the co-existence of such dense communities.

View Article and Find Full Text PDF

Through regular sampling surveys, the Flanders Marine Institute is generating long term data series for the Belgian coastal water and sand bank systems, a designated site in the Long Term Ecological Research (LTER) network. The data series is built on sampling activities initiated in 2002, but gradually upgraded and extended in the framework of the LifeWatch marine observatory and the Integrated Carbon Observation System (ICOS) participation. Nine nearshore stations are sampled monthly, with additional seasonal sampling of eight offshore stations.

View Article and Find Full Text PDF

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series.

View Article and Find Full Text PDF

The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L.

View Article and Find Full Text PDF

In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field.

View Article and Find Full Text PDF

The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae).

View Article and Find Full Text PDF

The effect of short and long-term induced anoxia on a benthic nematode community and its potential for recovery after reoxygenation were investigated in an in situ experiment on a silty-sand bottom in the Gulf of Trieste, the northern Adriatic Sea. Anoxia was created artificially by three underwater benthic Plexiglas chambers at a depth of 24 m. Treatments lasted for 2, 23 and 307 days.

View Article and Find Full Text PDF

Objectives: The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.

View Article and Find Full Text PDF

We investigated the temporal variation of pelagic and benthic food sources in the diet of benthic taxa at a depositional site in the Southern Bight of the North Sea by means of fatty acid (FA) biomarkers and compound-specific stable isotope analysis (CSIA). The taxa were the non-selective deposit feeding nematodes (Sabatieria spp. and 'other nematodes'), and three dominant macrobenthic species: two true suspension-deposit feeders (the bivalve Abra alba and the tube dwelling polychaete Owenia fusiformis) and the suspected predatory mud-dwelling anemone Sagartia sp.

View Article and Find Full Text PDF

Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.

View Article and Find Full Text PDF

Impact assessments of offshore wind farm installations and operations on the marine fauna are performed in many countries. Yet, only limited quantitative data on the physiological impact of impulsive sounds on (juvenile) fishes during pile driving of offshore wind farm foundations are available. Our current knowledge on fish injury and mortality due to pile driving is mainly based on laboratory experiments, in which high-intensity pile driving sounds are generated inside acoustic chambers.

View Article and Find Full Text PDF

Human activities at sea are still increasing. As biodiversity is a central topic in the management of our seas, it is important to understand how diversity responds to different disturbances related with physical impacts. We investigated the effects of three impacts, i.

View Article and Find Full Text PDF

The responses of nematode communities to short-term hypoxia (1 and 7 days) were investigated in three North Sea stations with different sediment types (coarse silt, fine sand and medium sand). In the field, nematode density, diversity, vertical distribution and community structure differ among the stations. In the laboratory, oxic and hypoxic treatments were established for 1 and 7 days for all sediment types.

View Article and Find Full Text PDF

The growing development of offshore wind energy installations across the North Sea is producing new hard anthropogenic structures in the natural soft sediments, causing changes to the surrounding macrobenthos. The extent of modification in permeable sediments around a gravity based wind turbine in the Belgian part of the North Sea was investigated in the period 2011-2012, along four gradients (south-west, north-east, south-east, north-west). Sediment grain size significantly reduced from 427 μm at 200 m to 312 ± 3 μm at 15 m from the foundation along the south-west and north-west gradients.

View Article and Find Full Text PDF

Oxygen is recognized as a structuring factor of metazoan communities in marine sediments. The importance of oxygen as a controlling factor on meiofauna (32 µm-1 mm in size) respiration rates is however less clear. Typically, respiration rates are measured under oxic conditions, after which these rates are used in food web studies to quantify the role of meiofauna in sediment carbon turnover.

View Article and Find Full Text PDF