Proc IEEE Int Conf Micro Electro Mech Syst
January 2024
This paper reports a microfabricated triaxial capacitive force sensor. The sensor is fully encapsulated with inert and biocompatible glass (fused silica) material. The sensor comprises two glass plates, on which four capacitors are located.
View Article and Find Full Text PDFDig Tech Pap IEEE Int Solid State Circuits Conf
February 2024
The sense of touch is critical to dexterous use of the hands and thus an essential component of efforts to restore hand function after amputation or paralysis. Prosthetic systems have addressed this goal with wearable tactile sensors. However, such wearable sensors are suboptimal for neuroprosthetic systems designed to reanimate a patient's own paralyzed hand.
View Article and Find Full Text PDFThe sense of touch is critical to dexterous use of the hands and thus an essential component to efforts to restore hand function after amputation or paralysis. Prosthetic systems have focused on wearable tactile sensors. But wearable sensors are suboptimal for neuroprosthetic systems designed to reanimate a patient's own paralyzed hand.
View Article and Find Full Text PDFThis article presents an implantable low-power wireless integrated system for tactile sensing applications. The reported ASIC utilizes a low-loss magnetic human body communication channel for both wireless power and data transfer. The chip is hybrid-integrated with an in-house fabricated MEMS capacitive force sensor to form an implantable artificial mechanoreceptor.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
April 2021
Implantable brain machine interfaces for treatment of neurological disorders require on-chip, real-time signal processing of action potentials (spikes). In this work, we present the first spike sorting SoC with integrated neural recording front-end and analog unsupervised classifier. The event-driven, low power spike sorter features a novel hardware-optimized, K-means based algorithm that effectively eliminates duplicate clusters and is implemented using a novel clockless and ADC-less analog architecture.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Diverse organisms, from insects to humans, actively seek out sensory information that best informs goal-directed actions. Efficient active sensing requires congruity between sensor properties and motor strategies, as typically honed through evolution. However, it has been difficult to study whether active sensing strategies are also modified with experience.
View Article and Find Full Text PDFBehavioral and neurophysiological evidence suggests that the slow (≤1 Hz) oscillation (SO) during sleep plays a role in consolidating hippocampal (HIPP)-dependent memories. The effects of the SO on HIPP activity have been studied in rodents and cats both during natural sleep and during anesthetic administration titrated to mimic sleep-like slow rhythms. In this study, we sought to document these effects in primates.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
The sense of touch and proprioception are critical to movement control. After spinal cord injury, these senses may be restored with direct, electrical microstimulation of the brain as part of a complete sensorimotor neuroprosthesis. The present study was designed to test, in part, the hypothesis that the cuneate nucleus (CN) of the brainstem is a suitable site to encode somatosensory information.
View Article and Find Full Text PDFThis paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator.
View Article and Find Full Text PDFReliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account.
View Article and Find Full Text PDFGrip force control involves mechanisms to adjust to unpredictable and predictable changes in loads during manual manipulation. Somatosensory feedback is critical not just to reactive, feedback control but also to updating the internal representations needed for proactive, feedforward control. The role of primary somatosensory cortex (S1) in these control strategies is not well established.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
April 2015
In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate.
View Article and Find Full Text PDFWe demonstrate the design and fabrication of tilted micropillar arrays on wrinkled elastomeric poly(dimethylsiloxane) as a reversibly switchable optical window. Upon re-stretching the as-prepared (opaque) film to the original pre-strain, the grating color is restored and ∼ 30% transmittance is recovered. Further stretching beyond the pre-strain makes the film more transparent.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. High density, active electrode arrays hold great promise in enabling high-resolution interface with the brain to access and influence this network activity. Integrating flexible electronic devices directly at the neural interface can enable thousands of multiplexed electrodes to be connected using many fewer wires.
View Article and Find Full Text PDFArrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we developed new devices that integrate ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors that are connected using fewer wires. We used this system to record spatial properties of cat brain activity in vivo, including sleep spindles, single-trial visual evoked responses and electrographic seizures.
View Article and Find Full Text PDFTraditional imaging systems capture and replicate the imaged environment in terms of color and intensity. One important property of light, which the human eye is blind to and is ignored by traditional imaging systems, is polarization. In this paper we present a novel, low power imaging sensor capable of recording the optical properties of partially linearly polarized light in real-time.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2010
This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO).
View Article and Find Full Text PDFA thin film polarization filter has been patterned and etched using reactive ion etching (RIE) in order to create 8 by 8 microns square periodic structures. The micropolarization filters retain the original extinction ratios of the unpatterned thin film. The measured extinction ratios on the micropolarization filters are approximately 1000 in the blue and green visible spectrum and approximately 100 in the red spectrum.
View Article and Find Full Text PDF