Shifts in phenology are among the key responses of organisms to climate change. When rates of phenological change differ between interacting species they may result in phenological asynchrony. Studies have found conflicting patterns concerning the direction and magnitude of changes in synchrony, which have been attributed to biological factors.
View Article and Find Full Text PDFArthropods play a crucial role in terrestrial ecosystems, for instance in mediating energy fluxes and in forming the food base for many organisms. To better understand their functional role in such ecosystem processes, monitoring of trends in arthropod biomass is essential. Obtaining direct measurements of the body mass of individual specimens is laborious.
View Article and Find Full Text PDFLoss and/or deterioration of refuelling habitats have caused population declines in many migratory bird species but whether this results from unequal mortality among individuals varying in migration traits remains to be shown. Based on 13 years of body mass and size data of great knots (Calidris tenuirostris) at a stopover site of the Yellow Sea, combined with resightings of individuals marked at this stopover site along the East Asian-Australasian Flyway, we assessed year to year changes in annual apparent survival rates, and how apparent survival differed between migration phenotypes (i.e.
View Article and Find Full Text PDFA forager's energy intake rate is usually constrained by a combination of handling time, encounter rate and digestion rate. On top of that, food intake may be constrained when a forager can only process a maximum amount of certain toxic compounds. The latter constraint is well described for herbivores with a limited tolerance to plant secondary metabolites.
View Article and Find Full Text PDFIn the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts.
View Article and Find Full Text PDFAbstractCentral place foragers often segregate in space, even without signs of direct agonistic interactions. Using parsimonious individual-based simulations, we show that for species with spatial cognitive abilities, individual-level memory of resource availability can be sufficient to cause spatial segregation in the foraging ranges of colonial animals. The shapes of the foraging distributions are governed by commuting costs, the emerging distribution of depleted resources, and the fidelity of foragers to their colonies.
View Article and Find Full Text PDFMany organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output.
View Article and Find Full Text PDFKubelka (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic.
View Article and Find Full Text PDFOrganisms cope with environmental stressors by behavioral, morphological, and physiological adjustments. Documentation of such adjustments in the wild provides information on the response space in nature and the extent to which behavioral and bodily adjustments lead to appropriate performance effects. Here we studied the morphological and digestive adjustments in a staging population of migrating Great Knots in response to stark declines in food abundance and quality at the Yalu Jiang estuarine wetland (northern Yellow Sea, China).
View Article and Find Full Text PDFBackground: Space use strategies by foraging animals are often considered to be species-specific. However, similarity between conspecific strategies may also result from similar resource environments. Here, we revisit classic predictions of the relationships between the resource distribution and foragers' space use by tracking free-living foragers of a single species in two contrasting resource landscapes.
View Article and Find Full Text PDFIn the original HTML version of this Article, the order of authors within the author list was incorrect. The consortium VRS Castricum was incorrectly listed after Theunis Piersma and should have been listed after Cornelis J. Camphuysen.
View Article and Find Full Text PDFUnder climate warming, migratory birds should align reproduction dates with advancing plant and arthropod phenology. To arrive on the breeding grounds earlier, migrants may speed up spring migration by curtailing the time spent en route, possibly at the cost of decreased survival rates. Based on a decades-long series of observations along an entire flyway, we show that when refuelling time is limited, variation in food abundance in the spring staging area affects fitness.
View Article and Find Full Text PDFMarine foundation species such as corals, seagrasses, salt marsh plants, and mangrove trees are increasingly found to engage in mutualistic interactions. Because mutualisms by their very nature generate a positive feedback between the species, subtle environmental impacts on one of the species involved may trigger mutualism breakdown, potentially leading to ecosystem regime shifts. Using an empirically parameterized model, we investigate a facultative mutualism between seagrass and lucinid bivalves with endosymbiotic sulfide-oxidizing gill bacteria in a tropical intertidal ecosystem.
View Article and Find Full Text PDFForagers whose energy intake rate is constrained by search and handling time should, according to the contingency model (CM), select prey items whose profitability exceeds or equals the forager's long-term average energy intake rate. This rule does not apply when prey items are found and ingested at a higher rate than the digestive system can process them. According to the digestive rate model (DRM), foragers in such situations should prefer prey with the highest digestive quality, instead of the highest profitability.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2017
Animals should time activities, such as foraging, migration and reproduction, as well as seasonal physiological adaptation, in a way that maximizes fitness. The fitness outcome of such activities depends largely on their interspecific interactions; the temporal overlap with other species determines when they should be active in order to maximize their encounters with food and to minimize their encounters with predators, competitors and parasites. To cope with the constantly changing, but predictable structure of the environment, organisms have evolved internal biological clocks, which are synchronized mainly by light, the most predictable and reliable environmental cue (but which can be masked by other variables), which enable them to anticipate and prepare for predicted changes in the timing of the species they interact with, on top of responding to them directly.
View Article and Find Full Text PDFBehavioural variation within a species is usually explained as the consequence of individual variation in physiology. However, new evidence suggests that the arrow of causality may well be in the reverse direction: behaviours such as diet preferences cause the differences in physiological and morphological traits. Recently, diet preferences were proposed to underlie consistent differences in digestive organ mass and movement patterns (patch residence times) in red knots (Calidris canutus islandica).
View Article and Find Full Text PDFThe extent to which animal migrations shape parasite transmission networks is critically dependent on a migrant's ability to tolerate infection and migrate successfully. Yet, sub-lethal effects of parasites can be intensified through periods of increased physiological stress. Long-distance migrants may, therefore, be especially susceptible to negative effects of parasitic infection.
View Article and Find Full Text PDFReductions in body size are increasingly being identified as a response to climate warming. Here we present evidence for a case of such body shrinkage, potentially due to malnutrition in early life. We show that an avian long-distance migrant (red knot, Calidris canutus canutus), which is experiencing globally unrivaled warming rates at its high-Arctic breeding grounds, produces smaller offspring with shorter bills during summers with early snowmelt.
View Article and Find Full Text PDFNegative density-dependence is generally studied within a single trophic level, thereby neglecting its effect on higher trophic levels. The 'functional response' couples a predator's intake rate to prey density. Most widespread is a type II functional response, where intake rate increases asymptotically with prey density; this predicts the highest predator densities at the highest prey densities.
View Article and Find Full Text PDFIn many marine ecosystems, biodiversity critically depends on foundation species such as corals and seagrasses that engage in mutualistic interactions [1-3]. Concerns grow that environmental disruption of marine mutualisms exacerbates ecosystem degradation, with breakdown of the obligate coral mutualism ("coral bleaching") being an iconic example [2, 4, 5]. However, as these mutualisms are mostly facultative rather than obligate, it remains unclear whether mutualism breakdown is a common risk in marine ecosystems, and thus a potential accelerator of ecosystem degradation.
View Article and Find Full Text PDFThe diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows.
View Article and Find Full Text PDFIn our seasonal world, animals face a variety of environmental conditions in the course of the year. To cope with such seasonality, animals may be phenotypically flexible, but some phenotypic traits are fixed. If fixed phenotypic traits are functionally linked to resource use, then animals should redistribute in response to seasonally changing resources, leading to a 'phenotype-limited' distribution.
View Article and Find Full Text PDFThe wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis).
View Article and Find Full Text PDF