Publications by authors named "Jan Van Campenhout"

The simulation of spiking neural networks (SNNs) is known to be a very time-consuming task. This limits the size of SNN that can be simulated in reasonable time or forces users to overly limit the complexity of the neuron models. This is one of the driving forces behind much of the recent research on event-driven simulation strategies.

View Article and Find Full Text PDF

We propose photonic reservoir computing as a new approach to optical signal processing in the context of large scale pattern recognition problems. Photonic reservoir computing is a photonic implementation of the recently proposed reservoir computing concept, where the dynamics of a network of nonlinear elements are exploited to perform general signal processing tasks. In our proposed photonic implementation, we employ a network of coupled Semiconductor Optical Amplifiers (SOA) as the basic building blocks for the reservoir.

View Article and Find Full Text PDF

Hardware implementations of Spiking Neural Networks are numerous because they are well suited for implementation in digital and analog hardware, and outperform classic neural networks. This work presents an application driven digital hardware exploration where we implement real-time, isolated digit speech recognition using a Liquid State Machine. The Liquid State Machine is a recurrent neural network of spiking neurons where only the output layer is trained.

View Article and Find Full Text PDF