Purpose: FAP is a membrane-bound protease under investigation as a pan-cancer target, given its high levels in tumors but limited expression in normal tissues. FAP-2286 is a radiopharmaceutical in clinical development for solid tumors that consists of two functional elements: a FAP-targeting peptide and a chelator used to attach radioisotopes. Preclinically, we evaluated the immune modulation and anti-tumor efficacy of FAP-2287, a murine surrogate for FAP-2286, conjugated to the radionuclide lutetium-177 (Lu) as a monotherapy and in combination with a PD-1 targeting antibody.
View Article and Find Full Text PDFPurpose: Fibroblast activation protein (FAP) is a membrane-bound protease that has limited expression in normal adult tissues but is highly expressed in the tumor microenvironment of many solid cancers. FAP-2286 is a FAP-binding peptide coupled to a radionuclide chelator that is currently being investigated in patients as an imaging and therapeutic agent. The potency, selectivity, and efficacy of FAP-2286 were evaluated in preclinical studies.
View Article and Find Full Text PDFObjective: The objective of this study was to determine how pharmacokinetically advantageous acylation impacts on glucagon-like peptide-1 receptor (GLP-1R) signal bias, trafficking, anti-hyperglycaemic efficacy, and appetite suppression.
Methods: In vitro signalling responses were measured using biochemical and biosensor assays. GLP-1R trafficking was determined by confocal microscopy and diffusion-enhanced resonance energy transfer.
The plasma protein binding capability of drug substances represents an important assay parameter in drug discovery and development. For very strong plasma protein binding molecules, however, the free fraction in plasma f is very small and therefore difficult to determine with standard methods. To solve this problem, the EScalate equilibrium shift in vitro assay was developed.
View Article and Find Full Text PDFThe central role of kinases in cell signaling has set them in the focus of biomedical research. In functional proteomics analyses, large- scale profiling of kinases has become feasible through the use of affinity pulldown beads that carry immobilized kinase inhibitors. As an alternative approach to solid phase beads, Capture Compound Mass Spectrometry (CCMS) enables the functional isolation of protein-classes on the basis of small molecule-protein interactions in solution.
View Article and Find Full Text PDFThe functional isolation of proteome subsets based on small molecule-protein interactions is an increasingly popular and promising field in functional proteomics. Entire protein families may be profiled on the basis of their common interaction with a metabolite or small molecule inhibitor. This is enabled by novel multifunctional small molecule probes.
View Article and Find Full Text PDFBecause dietary intake is supposed to be an important route of human exposure we quantified the dietary intake of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), perfluorohexanoate (PFHxA), and perfluorooctane sulfonamide (PFOSA) using 214 duplicate diet samples. The study was carried out with a study population of 15 female and 16 male healthy subjects aged 16-45 years. The participants collected daily duplicate diet samples over seven consecutive days in 2005.
View Article and Find Full Text PDFCationic polysaccharides containing N-hydroxypropyl-N,N,N-trimethylammonium substituents are widely used as conditioning agents for hair-care products. A sensitive method has been developed for the quantitation of these polymers. After acidic extraction from hair the polysaccharides are hydrolyzed using trifluoroacetic acid.
View Article and Find Full Text PDF