Publications by authors named "Jan Tkac"

Post-translational modifications of proteins play an important role in their stability, solubility and in vivo function. Also, for several reasons, such as the Golgi fragmentation during cancerogenesis, glycosylation as the most common modification is especially promising in offering high cancer specificity which, in combination with tissue-specific biomarkers available in the case of prostate diseases (PSA, PSMA, PAP), may lead to the development of novel oncodiagnostic approaches. In this review, we present the importance of subterminal glycan structures based on the N-acetylated monosaccharides GlcNAc and GalNAc in N- and also O-glycans, structures of which they are a component (LacNAc, LacdiNAc, branched structures).

View Article and Find Full Text PDF

Background: The medication used to treat benign prostate hyperplasia (BPH), a common condition in men over 50 years of age, can alter the levels of biomarkers used in prostate cancer detection. Commonly used medications for BPH include alpha-blockers, 5-alpha reductase inhibitors (5-ARIs), and muscarinic antagonists. We studied the impact of these drugs on total prostate-specific antigen (tPSA), free PSA (fPSA), [-2]proPSA, fPSA/tPSA ratio, and the Prostate Health Index (PHI), as well as novel potential biomarkers in the form of glycan composition of fPSA.

View Article and Find Full Text PDF

We investigated the use of boron-doped diamond (BDD) with different surface morphologies for the enhanced detection of nine different peptides by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). For the first time, we compared three different nanostructured BDD film morphologies (Continuous, Nanograss, and Nanotips) with differently terminated surfaces (-H, -O, and -F) to commercially available Ground Steel plates. All these surfaces were evaluated for their effectiveness in detecting the nine different peptides by MALDI-MS.

View Article and Find Full Text PDF

This review briefly introduces readers to an area where glycomics meets modern oncodiagnostics with a focus on the analysis of sialic acid (Neu5Ac)-terminated structures. We present the biochemical perspective of aberrant sialylation during tumourigenesis and its significance, as well as an analytical perspective on the detection of these structures using different approaches for diagnostic and therapeutic purposes. We also provide a comparison to other established liquid biopsy approaches, and we mathematically define an early-stage cancer based on the overall prognosis and effect of these approaches on the patient's quality of life.

View Article and Find Full Text PDF

The glycoprofiling of two proteins, the free form of the prostate-specific antigen (fPSA) and zinc-α-2-glycoprotein (ZA2G), was assessed to determine their suitability as prostate cancer (PCa) biomarkers. The glycoprofiling of proteins was performed by analysing changes in the glycan composition on fPSA and ZA2G using lectins (proteins that recognise glycans, i.e.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The review explores MXenes, which are innovative 2D nanomaterials, discussing their unique chemical properties, synthesis methods, and characterization techniques.
  • It highlights the diverse practical applications of MXenes, especially in healthcare, where they are used to detect various analytes such as metabolites, DNA/RNA, proteins, and even cells and viruses through electrochemical sensors and biosensors.
  • The article also discusses MXene-based devices specifically designed for cancer biomarker detection and wearable sensors that can monitor various human activities.
View Article and Find Full Text PDF

This review provides a comprehensive overview of our understanding of the role that glycans play in the formation, loading and release of extracellular vesicles (EVs). The capture of EVs (typically with a size of 100-200 nm) is described, including approaches based on glycan recognition with glycan-based analysis offering highly sensitive detection of EVs. Furthermore, detailed information is provided about the use of EV glycans and glycan processing enzymes as potential biomarkers, therapeutic targets or tools applied for regenerative medicine.

View Article and Find Full Text PDF

Screen-printing technology is a game changer in many fields including electrochemical biosensing. Two-dimensional nanomaterial MXene TiCT was integrated as a nanoplatform to immobilise enzyme sarcosine oxidase (SOx) onto the interface of screen-printed carbon electrodes (SPCEs). A miniaturised, portable, and cost-effective nanobiosensor was constructed using chitosan as a biocompatible glue for the ultrasensitive detection of prostate cancer biomarker sarcosine.

View Article and Find Full Text PDF

In this study, an assay for detection of the cancer biomarker Thomsen-nouvelle (Tn) antigen on the ELISA plates format was designed and developed. The effects of size and the interfacial density of the negative charge of magnetic beads (MBs) on the specific sensitivity of the bioaffinity interaction were studied. In particular, glyconanoconjugate, i.

View Article and Find Full Text PDF

In this study, we applied MXene as column cartridge for N-glycan enrichment from human samples with a focus on the analysis of sialic acid linkages using a derivatisation protocol followed by glycan analysis via Matrix Assisted Laser Desorption Ionisation-Time Of Flight Mass Spectrometry (MALDI-TOF-MS). The MXene-based cartridge enriches a higher number of glycans (i.e.

View Article and Find Full Text PDF

In this article we describe construction of a bioreceptive interface for detection of a breast cancer biomarker carbohydrate antigen CA15-3. The conductive interface was patterned by a 2D nanomaterial MXene, to which a mixed layer containing sulfobetaine and carboxybetaine was electrochemically grafted through a diazonium moiety. Such a modified interface was then applied for covalent immobilisation of anti-CA15-3 antibody as a bioreceptive probe for detection of a breast cancer biomarker.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) screen-printed working electrodes were developed for dopamine (DA) electrochemical sensing. MoS working electrodes were prepared from high viscosity screen-printable inks containing various concentrations and sizes of MoS particles and ethylcellulose binder. Rheological properties of MoS inks and their suitability for screen-printing were analyzed by viscosity curve, screen-printing simulation and oscillatory modulus.

View Article and Find Full Text PDF

Exosomes are considered to be a rich source of biomarkers, hence in this article we examine the best procedure for their isolation. We examine several isolation procedures, exosome storage conditions and other conditions affecting exosome production by prostate cell lines. We selected four different commercially available kits based on different principles to achieve exosome isolation, the best being magnetic-based.

View Article and Find Full Text PDF

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1.

View Article and Find Full Text PDF

The development of a novel SUspension Magnetic-Bead-based Assay (SUMBA) for the detection of antibodies against aberrant glycans (AGA) as potential cancer biomarkers is presented here. The SUMBA method was extensively optimised by choosing proper commercially available AGA able to specifically, and with high affinity, recognise aberrant glycans, which were attached to the protein backbone working as a molecular scaffold (a glycoconjugate). The whole SUMBA was optimised using several analytical techniques such as Surface Plasmon Resonance and Energy Dispersive X-ray Spectroscopy.

View Article and Find Full Text PDF

Background: Testicular cancer (TC) is the most frequent type of cancer among young men aged between 15 and 34 years. TC is treated using cisplatin, but 3%-5% of TC patients fail to respond to cisplatin, with a very bad to fatal prognosis. Accordingly, it is most important to quickly and readily identify those TC patients who are resistant to cisplatin treatment.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common types of cancer among men and women worldwide. Efforts are currently underway to find novel and more cancer-specific biomarkers that could be detected in a non-invasive way. The analysis of aberrant glycosylation of serum glycoproteins is a way to discover novel diagnostic and prognostic CRC biomarkers.

View Article and Find Full Text PDF

In this study, we propose a new approach to attain energy by salinity gradient engines with pistons based on hydrogels possessing polyelectrolyte and antipolyelectrolyte effects in a tandem arrangement, providing energy in each salinity gradient mode in a repeatable manner. The swelling of hydrogel with a polyelectrolyte effect and shrinking of hydrogel particles possessing an antipolyelectrolyte effect in desalinated water, and subsequent shrinking of hydrogel with polyelectrolyte and swelling of hydrogel antipolyelectrolyte effect in saline water, generate power in both increasing and decreasing salinity modes. To investigate the energy recovery, we scrutinized osmotic engine assemblies by a setup arrangement of pistons with hydrogel particles, with polyelectrolyte and antipolyelectrolyte effects, in tandem.

View Article and Find Full Text PDF

Introduction: Breast cancer (BCa) is the most common cancer type diagnosed in women and 5 most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality.

Areas Covered: In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation.

View Article and Find Full Text PDF

Smart gel materials are capable of controlling and switching swelling, water state, and wettability properties triggered by external stimuli. In this study, we fabricated a series of polyelectrolyte hydrogels bearing a 3-trimethylammoniumpropyl pendant to a methacrylamide-based backbone and examined the switchability with hydrophobic-like counteranions. The exchange between the initial chloride and camphor sulfate (CaS), dodecyl sulfate (DS), and perfluorooctanoate (PFO) counterions was investigated.

View Article and Find Full Text PDF

Hypothesis: Development of highly efficient low-molecular weight gelators (LMWGs) for safe energy storage materials is of great demand. Energy storage materials as fuel gels are often achieved by construction of hybrid organic frameworks capable of multiple noncovalent interactions in self-assembly, which allow tuning required properties at the molecular level by altering individual building blocks of the LMWG. However, LMWGs have limited rechargeable capability due to their chemical instability.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancer types among men and also acommon cause of death globally. With an increasing incidence, there is aneed for low-cost, reliable biomarkers present in samples, which could be provided non-invasively (without a need to perform prostate biopsy). Glycosylation changes of free-PSA (fPSA) are considered cancer-specific, while the level of different PSA forms can increase under other than cancerous conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new type of polymer using a polydisulfide structure derived from sulfobetaine and natural (R)-lipoic acid, which can break down when exposed to certain stimuli.
  • They conducted experiments to synthesize these polymers, investigate their behavior in different solvents, and analyze how they respond to external conditions using various spectroscopy methods.
  • The study revealed that the polymers exhibited tunable upper critical solution temperature (UCST) behavior and surface wettability, specifically noting that changes in solvent composition affected their performance, marking a significant advancement in the field.
View Article and Find Full Text PDF