Publications by authors named "Jan Ter Meulen"

Importance: Metastatic soft tissue sarcomas (STSs) have limited systemic therapy options, and immunomodulation has not yet meaningfully improved outcomes. Intratumoral (IT) injection of the toll-like receptor 4 (TLR4) agonist glycopyranosyl lipid A in stable-emulsion formulation (GLA-SE) has been studied as immunotherapy in other contexts.

Objective: To evaluate the safety, efficacy, and immunomodulatory effects of IT GLA-SE with concurrent radiotherapy in patients with metastatic STS with injectable lesions.

View Article and Find Full Text PDF

SARS-CoV-2 continues to circulate in the human population necessitating regular booster immunization for its long-term control. Ideally, vaccines should ideally not only protect against symptomatic disease, but also prevent transmission via asymptomatic shedding and cover existing and future variants of the virus. This may ultimately only be possible through induction of potent and long-lasting immune responses in the nasopharyngeal tract, the initial entry site of SARS-CoV-2.

View Article and Find Full Text PDF

Systemic interleukin-12 (IL12) anti-tumor therapy is highly potent but has had limited utility in the clinic due to severe toxicity. Here, we present two IL12-expressing vector platforms, both of which can overcome the deficiencies of previous systemic IL12 therapies: 1) an integrating lentiviral vector, and 2) a self-replicating messenger RNA formulated with polyethyleneimine. Intratumoral administration of either IL12 vector platform resulted in recruitment of immune cells, including effector T cells and dendritic cells, and the complete remission of established tumors in multiple murine models.

View Article and Find Full Text PDF

Bio-inspired surfaces with superamphiphobic properties are well known as effective candidates for antifouling technology. However, the limitation of large-area mastering, patterning and pattern collapsing upon physical contact are the bottleneck for practical utilization in marine and medical applications. In this study, a roll-to-plate nanoimprint lithography (R2P NIL) process using Morphotonics' automated Portis NIL600 tool was used to replicate high aspect ratio (5.

View Article and Find Full Text PDF

Preclinical data suggest that a "prime-boost" vaccine regimen using a target-expressing lentiviral vector for priming, followed by a recombinant protein boost, may be effective against cancer; however, this strategy has not been evaluated in a clinical setting. CMB305 is a prime-boost vaccine designed to induce a broad anti-NY-ESO-1 immune response. It is composed of LV305, which is an NY-ESO-1 expressing lentiviral vector, and G305, a recombinant adjuvanted NY-ESO-1 protein.

View Article and Find Full Text PDF

Intratumoral (IT) injections of Glucopyranosyl lipid A (G100), a synthetic toll-like receptor 4 (TLR4) agonist formulated in a stable emulsion, resulted in T-cell inflammation of the tumor microenvironment (TME) and complete cure of 60% of mice with large established A20 lymphomas. Strong abscopal effects on un-injected lesions were observed in a bilateral tumor model and surviving mice resisted a secondary tumor challenge. Depletion of CD8 T-cells, but not CD4 or NK cells, abrogated the anti-tumor effect.

View Article and Find Full Text PDF

Therapeutic cancer vaccines must induce high levels of tumor-specific cytotoxic CD8 T cells to be effective. We show here that tumor-antigen specific effector and memory T cell responses primed with a non-integrating, dendritic-cell targeted lentiviral vector (ZVex™) could be boosted significantly by either adjuvanted recombinant protein, adenoviral vectors, or self-replicating RNA. These heterologous prime-boost regimens also provided significantly better protection in murine tumor models.

View Article and Find Full Text PDF

Effective T cell-based immunotherapy of solid malignancies requires intratumoral activity of cytotoxic T cells and induction of protective immune memory. A major obstacle to intratumoral trafficking and activation of vaccine-primed or adoptively transferred tumor-specific T cells is the immunosuppressive tumor microenvironment (TME), which currently limits the efficacy of both anti-tumor vaccines and adoptive cell therapy (ACT). Combination treatments to overcome TME-mediated immunosuppression are therefore urgently needed.

View Article and Find Full Text PDF

While immune checkpoint inhibition is rapidly becoming standard of care in many solid tumors, immune checkpoint inhibitors (ICIs) fail to induce clinical responses in many patients, presumably due to insufficient numbers of tumor-specific T cells in the tumor milieu. To this end, immunization protocols using viral vectors expressing tumor-associated antigens are being explored to induce T cell responses that synergize with ICIs. However, the optimal combination of vaccine and immune checkpoint regimen remains undefined.

View Article and Find Full Text PDF

Purpose: LV305 is a modified, third-generation, nonreplicating, integration-deficient lentivirus-based vector designed to selectively transduce dendritic cells . LV305 induces expression of the New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) cancer testis antigen in dendritic cells, promoting immune responses against NY-ESO-1-expressing tumors. This phase I study evaluated the safety, immunogenicity, and preliminary efficacy of LV305 in patients with sarcoma or other solid tumors.

View Article and Find Full Text PDF

Human tumor cells express antigens that serve as targets for the host cellular immune system. This phase 1 dose-escalating study was conducted to assess safety and tolerability of G305, a recombinant NY-ESO-1 protein vaccine mixed with glucopyranosyl lipid A (GLA), a synthetic TLR4 agonist adjuvant, in a stable emulsion (SE). Twelve patients with solid tumors expressing NY-ESO-1 were treated using a 3 + 3 design.

View Article and Find Full Text PDF

Yellow fever virus (YFV), a deadly human pathogen, is the prototype of the genus Flavivirus. Recently, YFV re-emerged in Africa and Brazil, leading to hundreds of deaths, with some cases imported to China. Prophylactic or therapeutic countermeasures are urgently needed.

View Article and Find Full Text PDF

Purpose: G100 is a toll-like receptor 4 (TLR4) agonist that triggers innate and adaptive antitumor immune responses in preclinical models. This pilot study assessed the safety, efficacy, and immunologic activity of intratumoral (IT) administration of G100 in patients with Merkel cell carcinoma (MCC).

Patients And Methods: Patients with locoregional MCC ( = 3; cohort A) received neoadjuvant IT G100 (2 weekly doses at 5 μg/dose) followed by surgery and radiotherapy; patients with metastatic MCC ( = 7; cohort B) received 3 doses in a 6-week cycle and could receive additional cycles with/without radiotherapy.

View Article and Find Full Text PDF

The hemagglutinination inhibition (HI) response remains the gold standard used for the licensure of influenza vaccines. However, cell-mediated immunity (CMI) deserves more attention, especially when evaluating H5N1 influenza vaccines that tend to induce poor HI response. In this study, we measured the humoral response (HI) and CMI (flow cytometry) during a Phase II dose-ranging clinical trial (NCT01991561).

View Article and Find Full Text PDF

Effective induction of antitumor T cells is a pivotal goal of cancer immunotherapy. To this end, lentiviral vectors (LV) are uniquely poised to directly prime CD8 T-cell responses via transduction of dendritic cells in vivo and have shown promise as active cancer therapeutics in preclinical tumor models. However, until now, significant barriers related to production and regulation have prevented their widespread use in the clinic.

View Article and Find Full Text PDF

To be effective against HIV type 1 (HIV-1), vaccine-induced T cells must selectively target epitopes, which are functionally conserved (present in the majority of currently circulating and reactivated HIV-1 strains) and, at the same time, beneficial (responses to which are associated with better clinical status and control of HIV-1 replication), and rapidly reach protective frequencies upon exposure to the virus. Heterologous prime-boost regimens using virally vectored vaccines are currently the most promising vaccine strategies; nevertheless, induction of robust long-term memory remains challenging. To this end, lentiviral vectors induce high frequencies of memory cells due to their low-inflammatory nature, while typically inducing only low anti-vector immune responses.

View Article and Find Full Text PDF

We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells.

View Article and Find Full Text PDF

The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine.

View Article and Find Full Text PDF

Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease.

View Article and Find Full Text PDF

Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof.

View Article and Find Full Text PDF

Background/objectives: There is currently no licensed prophylactic or therapeutic vaccine for HSV-2 infection.

Methods: We developed a novel preclinical vaccine candidate, G103, consisting of three recombinantly expressed HSV-2 proteins (gD and the UL19 and UL25 gene products) adjuvanted with the potent synthetic TLR4 agonist glucopyranosyl lipid A (GLA) formulated in stable emulsion. The vaccine was tested for immunogenicity and efficacy in pre-clinical models for preventative and therapeutic vaccination.

View Article and Find Full Text PDF

We describe here the preclinical development of a dengue vaccine composed of recombinant subunit carboxy-truncated envelope (E) proteins (DEN-80E) for each of the four dengue serotypes. Immunogenicity and protective efficacy studies in Rhesus monkeys were conducted to evaluate monovalent and tetravalent DEN-80E vaccines formulated with ISCOMATRIX™ adjuvant. Three different doses and two dosing regimens (0, 1, 2 months and 0, 1, 2, and 6 months) were evaluated in these studies.

View Article and Find Full Text PDF

Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1.

View Article and Find Full Text PDF