Astronomical interferometry is a unique technique that allows observation with angular resolutions on the milliarcsec scale by combining the light of several apertures hundreds of meters apart. The PIONIER and GRAVITY instruments at the Very Large Telescope Interferometer have demonstrated that silica-based integrated optics (IO) provide a small-scale and highly stable solution for the interferometric beam combination process. Yet, important science cases such as exoplanet hunting or the spectroscopic characterization of exoplanetary atmospheres are favorable for observation in the mid-IR, namely the atmospheric windows L and L' band (3-4 µm), a wavelength range that is not covered by conventional silica-based IO.
View Article and Find Full Text PDFIn the past two decades high precision optical astronomical interferometry has benefited from the use of photonic technologies. Today, near-infrared interferometric instruments deliver high-resolution, hyperspectral images of astronomical objects and combine up to 4 independent telescopes at a time thanks to integrated optics (IO). Following the success of IO interferometry, several initiatives aim at developing components which could combine simultaneously more telescopes and extend their operation beyond the near-infrared bands.
View Article and Find Full Text PDF