Publications by authors named "Jan Stracke"

Innovative analytical instruments and development of new methods has provided a better understanding of protein particle formation in biopharmaceuticals but have also challenged the ability to obtain reproducible and reliable measurements. The need for protein-like particle standards mimicking the irregular shape, translucent nature and near-to-neutral buoyancy of protein particles remained one of the hot topics in the field of particle detection and characterization in biopharmaceutical formulations. An innovative protein-like particle model has been developed using two photo polymerization (2PP) printing allowing to fabricate irregularly shaped particles with similar properties as protein particles at precise size of 50 µm and 150 µm, representative of subvisible particles and visible particles, respectively.

View Article and Find Full Text PDF

Antibody combination therapies have become viable therapeutic treatment options for certain severe diseases such as cancer. The co-formulation production approach is intrinsically associated with more complex drug product variant profiles and creates more challenges for analytical control of drug product quality. In addition to various individual quality attributes, those arising from the interactions between the antibodies also potentially emerge through co-formulation.

View Article and Find Full Text PDF

Stabilization of critical reagents by freeze-drying would facilitate storage and transportation at ambient temperatures, and simultaneously enable constant reagent performance for long-term bioanalytical support throughout drug development. Freeze-drying as a generic process for stable performance and storage of critical reagents was investigated by establishing an universal formulation buffer and lyophilization process. Using a storage-labile model protein, formulation buffers were evaluated to preserve reagent integrity during the freeze-drying process, and to retain functional performance after temperature stress.

View Article and Find Full Text PDF

Oxidative damage of biopharmaceuticals during manufacturing and storage is a key concern throughout pharmaceutical development. However, few simple and robust analytical methods are available for the determination of oxidation sites. Here, the potential of affinity capillary electrophoresis (ACE) in the separation of proteins with oxidized methionine (Met) residues is shown.

View Article and Find Full Text PDF

CZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before.

View Article and Find Full Text PDF

During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required.

View Article and Find Full Text PDF

Following intravitreal (IVT) injection, therapeutic proteins get exposed to physiological pH, temperature and components in the vitreous humor (VH) for a significantly long time. Therefore, it is of interest to study the stability of the proteins in the VH. However, the challenge posed by the isolated VH (such as pH shift upon isolation and incubation due to the formation of smaller molecular weight (M) degradation products) can result in artefacts when investigating protein stability in relevance for the actual in vivo situation.

View Article and Find Full Text PDF

Therapeutic antibodies can undergo a variety of chemical modification reactions in vitro. Depending on the site of modification, either antigen binding or Fc-mediated functions can be affected. Oxidation of tryptophan residues is one of the post-translational modifications leading to altered antibody functionality.

View Article and Find Full Text PDF

Mesothelin overexpression in lung adenocarcinomas correlates with the presence of activating KRAS mutations and poor prognosis. Hence SS1P, a mesothelin-targeted immunotoxin, could offer valuable treatment options for these patients, but its use in solid tumor therapy is hampered by high immunogenicity and non-specific toxicity. To overcome both obstacles we developed RG7787, a de-immunized cytotoxic fusion protein comprising a humanized SS1 Fab fragment and a truncated, B-cell epitope silenced, 24 kD fragment of Pseudomonas exotoxin A (PE24).

View Article and Find Full Text PDF

The formation of undesired high molecular weight species such as dimers is an important quality attribute for therapeutic monoclonal antibody formulations. Therefore, the thorough understanding of mAb dimerization and the detailed characterization mAb dimers is of great interest for future pharmaceutical development of therapeutic antibodies. In this work, we focused on the analyses of different mAb dimers regarding size, surface properties, chemical identity, overall structure and localization of possible dimerization sites.

View Article and Find Full Text PDF

The stability of protein therapeutics during the residence time in the vitreous humor (VH) is an important consideration for intra ocular treatment and can possibly impact therapeutic efficacy and/or treatment intervals. Unavailability of the reliable Ex-vivo intravitreal (ExVit) model to estimate protein stability following IVT has driven the research focus to develop such model which can facilitate protein stability estimation before in-vivo experiments. In this manuscript, we have developed and evaluated three ExVit models, namely, ExVit static, semi-dynamic and dynamic.

View Article and Find Full Text PDF

Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established.

View Article and Find Full Text PDF

In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the "knob-into-hole" technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity.

View Article and Find Full Text PDF

Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn.

View Article and Find Full Text PDF
Article Synopsis
  • Bispecific antibodies (bsAbs) were developed to deliver small interfering RNA (siRNA) specifically to cancer cells by targeting tumor antigens while also binding to digoxigenin (Dig).
  • The bsAb-siRNA complexes effectively internalized into cells, but the release of siRNA into the cytoplasm was initially insufficient for mRNA knockdown.
  • To enhance delivery and achieve effective mRNA knockdown, the siRNA was formulated into nanoparticles, enabling targeted siRNA delivery in a variety of cell types and showing promising results in tumor models in mice.
View Article and Find Full Text PDF

In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies.

View Article and Find Full Text PDF

The degradation of proteins by asparagine deamidation and aspartate isomerization is one of several chemical degradation pathways for recombinant antibodies. In this study, we have identified two solvent accessible degradation sites (light chain aspartate-56 and heavy chain aspartate-99/101) in the complementary-determining regions of a recombinant IgG1 antibody susceptible to isomerization under elevated temperature conditions. For both hot-spots, the degree of isomerization was found to be significantly higher than the deamidation of asparagine-(387, 392, 393) in the conserved CH3 region, which has been identified as being solvent accessible and sensitive to chemical degradation in previous studies.

View Article and Find Full Text PDF

Bispecific antibodies that bind cell-surface targets as well as digoxigenin (Dig) were generated for targeted payload delivery. Targeting moieties are IgGs that bind the tumor antigens Her2, IGF1R, CD22, or LeY. A Dig-binding single-chain Fv was attached in disulfide-stabilized form to C termini of CH3 domains of targeting antibodies.

View Article and Find Full Text PDF

Ligand-binding assays are the standard technology used for bioanalysis of therapeutic proteins, for example, for drug quantification (pharmacokinetics assays) and immunogenicity testing (antidrug antibody assays). Besides the selection of the most suitable technology platform (e.g.

View Article and Find Full Text PDF

In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays.

View Article and Find Full Text PDF

The role of matrix metalloproteinases in the degradative events invoked in the cartilage and bone of arthritic joints has long been appreciated and attempts at the development of proteinase inhibitors as potential therapeutic agents have been made. However, the spectrum of these enzymes orchestrating connective tissue turnover and general biology is much larger than anticipated. Biochemical studies of the individual members of the matrix metalloproteinase family are now underway, ultimately leading to a more detailed understanding of the function of their domain structures and to defining their specific role in cellular systems and the way that they are regulated.

View Article and Find Full Text PDF