Iridium(I)-catalyzed allylation of the enantiopure monoprotected copper(I) alkoxide, generated from (S)-5a, with the enantiopure allylic carbonates (R)-9a,b has been developed as the key step in a new approach to C-nucleoside analogues. The anomeric center was thus constructed via a stereocontrolled formation of the C-O rather than C-C bond with retention of configuration. The resulting bisallyl ethers 15a,b (≥90% de and >99% ee) were converted into C-ribosides 29a,b via the Ru-catalyzed ring-closing metathesis, followed by a diastereoselective dihydroxylation catalyzed by OsO(4) or RuO(4) and deprotection.
View Article and Find Full Text PDFEnantiomerically pure 1-arylpropenols 8 have been prepared by resolution of the corresponding racemates, using the lipase formulation Novozyme 435. Deprotonation of the latter alcohols with n-BuLi, followed by derivatization with (t-BuO)2CO, afforded the corresponding carbonates 5. Optimization of the process is presented.
View Article and Find Full Text PDF