The number of micro-scale spirit distilleries worldwide has grown considerably over the past decade. With an onus on the distillery sector to reduce its environmental impact, such as carbon emissions, opportunities for increasing energy efficiency need to be implemented. This study explores the potential environmental benefits and financial gains achievable through heat recovery from different process and by-product streams, exemplified for a Scotch whisky distillery, but transferrable to micro-distilleries worldwide.
View Article and Find Full Text PDFAlthough the food service sector is a major user of water, the potential for heat recovery from commercial kitchens' drain water remains largely unexplored. For the first time, we compare the life cycle environmental burdens of producing and installing a heat recovery system with the environmental credits arising from energy savings for a restaurant case study, and for the entire UK food service sector. Life Cycle Assessment was applied to determine the impacts of heat recovery systems made from different materials and comprising a heat exchanger in the shape of a concentric double-walled pipe, pipework and fittings.
View Article and Find Full Text PDFWe have developed an original method for global optimization of protein side-chain conformations, called the Fast and Accurate Side-Chain Topology and Energy Refinement (FASTER) method. The method operates by systematically overcoming local minima of increasing order. Comparison of the FASTER results with those of the dead-end elimination (DEE) algorithm showed that both methods produce nearly identical results, but the FASTER algorithm is 100-1000 times faster than the DEE method and scales in a stable and favorable way as a function of protein size.
View Article and Find Full Text PDF