Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
October 2021
Motor impaired patients performing repetitive motor tasks often reveal large single-trial performance variations. Based on a data-driven framework, we extracted robust oscillatory brain states from pre-trial intervals, which are predictive for the upcoming motor performance on the level of single trials. Based on the brain state estimate, i.
View Article and Find Full Text PDFElectroencephalogram data used in the domain of brain-computer interfaces typically has subpar signal-to-noise ratio and data acquisition is expensive. An effective and commonly used classifier to discriminate event-related potentials is the linear discriminant analysis which, however, requires an estimate of the feature distribution. While this information is provided by the feature covariance matrix its large number of free parameters calls for regularization approaches like Ledoit-Wolf shrinkage.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
The time between the onset of subsequent auditory or visual stimuli - also known as stimulus onset asynchrony (SOA) - determines many of the event-related potential characteristics of the resulting evoked brain signals. Specifically, the SOA value influences the performance of an individual subject in brain-computer interface (BCI) applications like spellers. In the past, subject-specific optimization of the SOA was rarely considered in BCI studies.
View Article and Find Full Text PDF