Publications by authors named "Jan Seliger"

Objectives: Assessment of myocardial strain by feature tracking magnetic resonance imaging (FT-MRI) in human fetuses with and without congenital heart disease (CHD) using cardiac Doppler ultrasound (DUS) gating.

Methods: A total of 43 human fetuses (gestational age 28-41 weeks) underwent dynamic cardiac MRI at 3 T. Cine balanced steady-state free-precession imaging was performed using fetal cardiac DUS gating.

View Article and Find Full Text PDF

A nonenzymatic dynamic kinetic resolution of acyclic and cyclic benzylic alcohols is reported. The approach merges rapid transition-metal-catalyzed alcohol racemization and enantioselective Cu-H-catalyzed dehydrogenative Si-O coupling of alcohols and hydrosilanes. The catalytic processes are orthogonal, and the racemization catalyst does not promote any background reactions such as the racemization of the silyl ether and its unselective formation.

View Article and Find Full Text PDF

The non-enzymatic kinetic resolution of racemic mixtures of alcohols by silylation had been unknown before the turn of the century. This stands in stark contrast to established acylation techniques. The same applies to the related desymmetrization of diols.

View Article and Find Full Text PDF

In terms of drug disposal and metabolism SDR21C1 (carbonyl reductase 1; CBR1) exerts an assorted substrate spectrum among a large variety of clinically relevant substances. Additionally, this short-chain dehydrogenase/reductase is extensively expressed in most tissues of the human body, thus underpinning its role in xenobiotic metabolism. Reduction of the chemotherapeutic daunorubicin (DAUN) to daunorubicinol (DAUNol) is a prominent example of its metabolic properties in terms of chemoresistance and cardiotoxicity.

View Article and Find Full Text PDF

A broad range of tertiary propargylic alcohols were kinetically resolved by catalyst-controlled enantioselective silylation. This non-enzymatic kinetic resolution is catalyzed by a Cu-H species and makes use of the commercially available precatalyst MesCu/(R,R)-Ph-BPE and a simple hydrosilane as the resolving reagent. Both alkyl,aryl- as well as dialkyl-substituted propargylic alcohols participate, and especially high selectivity factors are achieved when the alkyne terminus carries a TIPS group, which also enables facile post-functionalization in this position (s up to 207).

View Article and Find Full Text PDF

Hop-derived compounds have been subjected to numerous biomedical studies investigating their impact on a wide range of pathologies. Isomerised bitter acids (isoadhumulone, isocohumulone and isohumulone) from hops, used in the brewing process of beer, are known to inhibit members of the aldo-keto-reductase superfamily. Aldo-keto-reductase 1B10 (AKR1B10) is upregulated in various types of cancer and has been reported to promote carcinogenesis.

View Article and Find Full Text PDF

Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (K = 15.

View Article and Find Full Text PDF

The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity.

View Article and Find Full Text PDF