Publications by authors named "Jan Sedzik"

Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases.

View Article and Find Full Text PDF

Human P0 is the main myelin glycoprotein of the peripheral nervous system. It can bind six different glycans, all linked to Asn(93) , the unique glycosylation site. Other myelin glycoproteins, also with a single glycosylation site (PMP22 at Asn(36) , MOG at Asn(31) ), bind only one glycan.

View Article and Find Full Text PDF

The shortest sequence of amino acids in protein containing functional and structural information is a "motif." To understand myelin protein functions, we intensively searched for motifs that can be found in myelin proteins. Some myelin proteins had several different motifs or repetition of the same motif.

View Article and Find Full Text PDF

Myelin membrane is a biological complex of glial cells origin; it is composed of 25% (w/w) proteins and 75% lipids, and more than 300 proteins are associated with central nervous system myelin (for peripheral nervous system myelin, such data are lacking). Myelin plays an important role in maintaining propagation of nerve signals. To uncover the nature of propagation phenomena, it is essential to study biochemistry of myelin proteins and lipids, myelin composition, and myelin structure.

View Article and Find Full Text PDF

Complementary collision-induced/electron capture dissociation Fourier-transform ion cyclotron resonance mass spectrometry was used to fully sequence the protein P2 myelin basic protein. It is an antigenic fatty-acid-binding protein that can induce experimental autoimmune neuritis: an animal model of Guillain-Barré syndrome, a disorder similar in etiology to multiple sclerosis. Neither the primary structure of the porcine variant, nor the fatty acids bound by the protein have been well established to date.

View Article and Find Full Text PDF

Myelin proteins of the central and peripheral nervous system range from very hydrophilic to extremely hydrophobic proteins. Their biological function and involvement in various clinically defined neurological diseases are well documented. In this review the myelin proteins will be compared with proteins of alphaviruses with emphasis on Semliki Forest Virus (strain pSP6-SFV4), to elucidate better the multiple function and the potential role in several neurological diseases.

View Article and Find Full Text PDF

The P2 protein of peripheral nervous system myelin induces experimental allergic neuritis in rats, a model of Guillain-Barré syndrome in humans. Previous purification procedures have used acid extraction to obtain the protein in lipid-free form (LF-P2). Here, we have purified the P2 protein in lipid-bound form (LB-P2) by extracting myelin with the detergent CHAPS, followed by Cu(2+)-affinity column chromatography.

View Article and Find Full Text PDF

The preparation of a pure and homogeneous protein sample at proper concentration is a prerequisite for success when attempting their crystallization for structural determination. The detergents suitable for solubilization particularly of membrane proteins are not always the best for crystallization. Myelin of the peripheral nervous system of vertebrates is the example of a membrane for which neutral or "gentle" detergents are not even strong enough to solubilize its proteins.

View Article and Find Full Text PDF