In this issue of Developmental Cell, Toker et al. show that in C. elegans, stress-induced sperm defects lead to epigenetically heritable increased sexual attractiveness and increased mating between hermaphrodites and males.
View Article and Find Full Text PDFEpigenetic inheritance describes the transmission of gene regulatory information across generations without altering DNA sequences, enabling offspring to adapt to environmental conditions. Small RNAs have been implicated in this, through both the oocyte and the sperm. However, as much of the cellular content is extruded during spermatogenesis, it is unclear whether cytoplasmic small RNAs can contribute to epigenetic inheritance through sperm.
View Article and Find Full Text PDFTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo.
View Article and Find Full Text PDFSmall RNA pathways defend the germlines of animals against selfish genetic elements, yet pathway activities need to be contained to prevent silencing of self genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian dipeptidyl peptidase (DPP) 8/9, processes the unusually proline-rich N termini of WAGO-1 and WAGO-3 Argonaute (Ago) proteins.
View Article and Find Full Text PDFIn Caenorhabditis elegans, the piRNA (21U RNA) pathway is required to establish proper gene regulation and an immortal germline. To achieve this, PRG-1-bound 21U RNAs trigger silencing mechanisms mediated by RNA-dependent RNA polymerase (RdRP)-synthetized 22G RNAs. This silencing can become PRG-1-independent and heritable over many generations, a state termed RNA-induced epigenetic gene silencing (RNAe).
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2020
Hippocampus contouring for radiotherapy planning is performed on MR image data due to poor anatomical visibility on computed tomography (CT) data. Deep learning methods for direct CT hippocampus auto-segmentation exist, but use MR-based training contours. We investigate if these can be replaced by CT-based contours without loss in segmentation performance.
View Article and Find Full Text PDFAs artificial intelligence for image segmentation becomes increasingly available, the question whether these solutions generalize between different hospitals and geographies arises. The present study addresses this question by comparing multi-institutional models to site-specific models. Using CT data sets from four clinics for organs-at-risk of the female breast, female pelvis and male pelvis, we differentiate between the effect from population differences and differences in clinical practice.
View Article and Find Full Text PDFAim: The segmentation of organs from a CT scan is a time-consuming task, which is one hindrance for adaptive radiation therapy. Through deep learning, it is possible to automatically delineate organs. Metrics like dice score do not necessarily represent the impact for clinical practice.
View Article and Find Full Text PDFRadiation therapy is one of the key cancer treatment options. To avoid adverse effects in the healthy tissue, the treatment plan needs to be based on accurate anatomical models of the patient. In this work, an automatic segmentation solution for both female breasts and the heart is constructed using deep learning.
View Article and Find Full Text PDFThe damped oscillations of liquid-immersed ferrofluid sessile droplets were studied with high-speed imaging experiments and analytical modeling to develop a novel microrheology technique. Droplet oscillations were induced with an external magnetic field, thereby avoiding transients in the resulting vibrational response of the droplet. By following the droplet relaxation with a high-speed camera, the frequency and relaxation time of the damped harmonic oscillations were measured.
View Article and Find Full Text PDF