An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain.
View Article and Find Full Text PDFThe way in which brain structures express different morphologies is not fully understood. Here we investigate variability in brain anatomy using ex vivo MRI of three common laboratory mouse strains: in two inbred strains (C57BL/6 and 129S6) and one outbred strain (CD-1). We use Generalised Procrustes Analysis (GPA) to estimate modes of anatomical variability.
View Article and Find Full Text PDFBackground: We examined the neurobiological mechanisms underlying stress susceptibility using structural magnetic resonance imaging and diffusion tensor imaging to determine neuroanatomic differences between stress-susceptible and resilient mice. We also examined synchronized anatomic differences between brain regions to gain insight into the plasticity of neural networks underlying stress susceptibility.
Methods: C57BL/6 mice underwent 10 days of social defeat stress and were subsequently tested for social avoidance.
The role of cortical activity in generating and abolishing chronic pain is increasingly emphasized in the clinical community. Perhaps the most striking example of this is the maladaptive plasticity theory, according to which phantom pain arises from remapping of cortically neighbouring representations (lower face) into the territory of the missing hand following amputation. This theory has been extended to a wide range of chronic pain conditions, such as complex regional pain syndrome.
View Article and Find Full Text PDFEnvironmental enrichment is a model of increased structural brain plasticity. Previous histological observations have shown molecular and cellular changes in a few pre-determined areas of the rodent brain. However, little is known about the time course of enrichment-induced brain changes and how they distribute across the whole brain.
View Article and Find Full Text PDFThe brain has been shown to remain structurally plastic even throughout adulthood. However, little is known how motor-skill training affects different MRI modalities in the adult mouse brain. The aim of this study is to investigate whether rotarod training, a simple motor training task taken from the standard test battery, is associated with structural plasticity observable with different MRI modalities in adult C57BL/6 mice.
View Article and Find Full Text PDFLearning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009).
View Article and Find Full Text PDFThe ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6weeks, following either a high intensity or a low intensity training regime.
View Article and Find Full Text PDFLearning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry.
View Article and Find Full Text PDFArm-amputation involves two powerful drivers for brain plasticity-sensory deprivation and altered use. However, research has largely focused on sensory deprivation and maladaptive change. Here we show that adaptive patterns of limb usage after amputation drive cortical plasticity.
View Article and Find Full Text PDFNonlinear registration algorithms provide a way to estimate structural (brain) differences based on magnetic resonance images. Their ability to align images of different individuals and across modalities has been well-researched, but the bounds of their sensitivity with respect to the recovery of salient morphological differences between groups are unclear. Here we develop a novel approach to simulate deformations on MR brain images to evaluate the ability of two registration algorithms to extract structural differences corresponding to biologically plausible atrophy and expansion.
View Article and Find Full Text PDFPhantom pain after arm amputation is widely believed to arise from maladaptive cortical reorganization, triggered by loss of sensory input. We instead propose that chronic phantom pain experience drives plasticity by maintaining local cortical representations and disrupting inter-regional connectivity. Here we show that, while loss of sensory input is generally characterized by structural and functional degeneration in the deprived sensorimotor cortex, the experience of persistent pain is associated with preserved structure and functional organization in the former hand area.
View Article and Find Full Text PDFThe brain regions functionally engaged in motor sequence performance are well-established, but the structural characteristics of these regions and the fiber pathways involved have been less well studied. In addition, relatively few studies have combined multiple magnetic resonance imaging (MRI) and behavioral performance measures in the same sample. Therefore, the current study used diffusion tensor imaging (DTI), probabilistic tractography, and voxel-based morphometry (VBM) to determine the structural correlates of skilled motor performance.
View Article and Find Full Text PDFThe ability for endogenous pain control varies considerably among individuals. The mechanisms underlying this interindividual difference are incompletely understood. We used placebo analgesia as a classic model of endogenous pain modulation in combination with diffusion tensor magnetic resonance imaging to test the hypothesis of a structural predisposition for the individual capacity of endogenous pain control.
View Article and Find Full Text PDFChem Commun (Camb)
November 2011
Attenuated total reflectance infrared spectroscopy is used to monitor nanodiamond surface group transformations in the presence of aqueous IrCl(6)(2-). Electron transfer between the nanoparticle surface and the solution redox species results in oxidation of ∼8.5% of surface alcohol groups, with concomitant formation of unsaturated ketone or quinone-like moieties.
View Article and Find Full Text PDFOur two closest living primate relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), exhibit significant behavioral differences despite belonging to the same genus and sharing a very recent common ancestor. Differences have been reported in multiple aspects of social behavior, including aggression, sex, play and cooperation. However, the neurobiological basis of these differences has only been minimally investigated and remains uncertain.
View Article and Find Full Text PDFFront Syst Neurosci
July 2011
The physical structure of white matter fiber bundles constrains their function. Any behavior that relies on transmission of signals along a particular pathway will therefore be influenced by the structural condition of that pathway. Diffusion-weighted magnetic resonance imaging provides localized measures that are sensitive to white matter microstructure.
View Article and Find Full Text PDFAn in situ infrared spectroscopic analysis of the thermal dehydration of zirconyl chloride octahydrate was carried out to identify bending mode vibrations of distinctive water molecules in this well-defined zirconium(IV) cluster cation. TG-MS analysis revealed the particular temperatures where one water molecule at a time was removed from the solid hydrate. In situ IR data unveiled remarkable spectral changes featuring isosbestic behavior.
View Article and Find Full Text PDFThe fornix is the main tract between the medial temporal lobe (MTL) and medial diencephalon, both of which are critical for episodic memory. The precise involvement of the fornix in memory, however, has been difficult to ascertain since damage to this tract in human amnesics is invariably accompanied by atrophy to surrounding structures. We used diffusion-weighted imaging to investigate whether individual differences in fornix white matter microstructure in neurologically healthy participants were related to differences in memory as assessed by two recognition tasks.
View Article and Find Full Text PDFAlthough experience-dependent structural changes have been found in adult gray matter, there is little evidence for such changes in white matter. Using diffusion imaging, we detected a localized increase in fractional anisotropy, a measure of microstructure, in white matter underlying the intraparietal sulcus following training of a complex visuo-motor skill. This provides, to the best of our knowledge, the first evidence for training-related changes in white-matter structure in the healthy human adult brain.
View Article and Find Full Text PDFWe have identified and studied a pronounced artifact in diffusion-weighted MRI on a clinical system. The artifact results from vibrations of the patient table due to low-frequency mechanical resonances of the system which are stimulated by the low-frequency gradient switching associated with the diffusion-weighting. The artifact manifests as localized signal-loss in images acquired with partial Fourier coverage when there is a strong component of the diffusion-gradient vector in the left-right direction.
View Article and Find Full Text PDFConvergent experimental evidence points to the cerebellum as a key neural structure mediating adaptation to visual and proprioceptive perturbations. In a previous study, we have shown that activity in the anterior cerebellum varies with the rate of learning, with fast learners exhibiting more activity in this region than slow learners. Here, we investigated whether this variability in behavior may partly reflect inter-individual differences in the structural properties of cerebellar white-matter output tracts.
View Article and Find Full Text PDFHumans differ substantially in their ability to implicitly extract structural regularities from experience, as required for learning the grammar of a language. The mechanisms underlying this fundamental inter-individual difference, which may determine initial success in language learning, are incompletely understood. Here, we use diffusion tensor magnetic resonance imaging (DTI) to determine white matter integrity around Broca's area, which is crucially involved in both natural and artificial language processing.
View Article and Find Full Text PDFThe substantia nigra contains dopaminergic cells that project to the striatum and are affected by the neurodegenerative process that appears in Parkinson's disease (PD). For accurate differential diagnosis and for disease monitoring the availability of a sensitive and non-invasive biomarker for Parkinson's disease would be essential. Although there has been notable progress in studying correlates of nigral degeneration by means of magnetic resonance imaging (MRI) in the past decade, MRI and analysis techniques that allow accurate high-resolution mapping of the SN within a clinically acceptable acquisition time are still elusive.
View Article and Find Full Text PDF