In this paper we report phosphorescent Pt(ii) complexes as monomers which can be directly incorporated into growing polymers. Due to the amphiphilic nature of the polymers they can self-assemble into micellar nanoparticles, where the phosphorescent Pt(ii) complexes can arrange selectively in the core or shell of the nanoparticles. The complexes enable dual orthogonal imaging, made possible by the heavy metal, which enhances the contrast for these micelles in electron microscopy and facilitates spin-orbit coupling that turns on microsecond lifetime luminescence.
View Article and Find Full Text PDFThe improvement of molecular electronic devices such as organic light-emitting diodes requires fundamental knowledge about the structural and electronic properties of the employed molecules as well as their interactions with neighboring molecules or interfaces. We show that highly resolved scanning tunneling microscopy (STM) and spectroscopy (STS) are powerful tools to correlate the electronic properties of phosphorescent complexes (i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2015
Frontier molecular orbitals can be visualized and selectively set to achieve blue phosphorescent metal complexes. For this purpose, the HOMOs and LUMOs of tridentate Pt(II) complexes were measured using scanning tunneling microscopy and spectroscopy. The introduction of electron-accepting or -donating moieties enables independent tuning of the frontier orbital energies, and the measured HOMO-LUMO gaps are reproduced by DFT calculations.
View Article and Find Full Text PDFWe have investigated the structural and electronic properties of phosphorescent planar platinum(II) complexes at the interface of Au(111) with submolecular resolution using combined scanning tunneling microscopy and spectroscopy as well as density functional theory. Our analysis shows that molecule-substrate coupling and lateral intermolecular interactions are weak. While the ligand orbitals remain essentially unchanged upon contact with the substrate, we found modified electronic behavior at the Pt atom due to local hybridization and charge transfer to the substrate.
View Article and Find Full Text PDF