Publications by authors named "Jan Sadownik"

Leucettinibs are substituted 2-aminoimidazolin-4-ones (inspired by the marine sponge natural product Leucettamine B) developed as pharmacological inhibitors of DYRK1A (dual-specificity, tyrosine phosphorylation-regulated kinase 1A), a therapeutic target for indications such as Down syndrome and Alzheimer's disease. Leucettinib-21 was selected as a drug candidate following extensive structure/activity studies and multiparametric evaluations. We here report its physicochemical properties (X-ray powder diffraction, differential scanning calorimetry, stability, solubility, crystal structure) and drug-like profile.

View Article and Find Full Text PDF

The creation of reaction networks capable of exhibiting responses that are properties of entire systems represents a significant challenge for the chemical sciences. The system-level behavior of a reaction network is linked intrinsically to its topology and the functional connections between its nodes. A simple network of chemical reactions constructed from four reagents, in which each reagent reacts with exactly two others, can exhibit up-regulation of two products even when only a single chemical reaction is addressed catalytically.

View Article and Find Full Text PDF

How new species emerge in nature is still incompletely understood and difficult to study directly. Self-replicating molecules provide a simple model that allows us to capture the fundamental processes that occur in species formation. We have been able to monitor in real time and at a molecular level the diversification of self-replicating molecules into two distinct sets that compete for two different building blocks ('food') and so capture an important aspect of the process by which species may arise.

View Article and Find Full Text PDF

A single, appropriately designed, recognition event targets and transforms one of two reactive members of an exchanging pool of compounds through a recognition-mediated irreversible cycloaddition reaction, altering dramatically the final composition and kinetic behaviour of the dynamic library.

View Article and Find Full Text PDF

Self-replicating molecules are likely to have played a central role in the origin of life. Most scenarios of Darwinian evolution at the molecular level require self-replicators capable of exponential growth, yet only very few exponential replicators have been reported to date and general design criteria for exponential replication are lacking. Here we show that a peptide-functionalized macrocyclic self-replicator exhibits exponential growth when subjected to mild agitation.

View Article and Find Full Text PDF

We use a range of spectroscopic methods to provide mechanistic insight into a phosphatase-driven supramolecular transformation whereby an amphiphilic peptide building block, upon dephosphorylation, switches from a solution-phase, micellar structure to a gel-phase, chiral uni-directional nanofibre morphology.

View Article and Find Full Text PDF

Self-assembled peptide systems have been widely studied in the context of gaining understanding of the rules that govern biomolecular processes and increasingly as new bio-inspired nanomaterials. Such materials may be designed to be highly dynamic, displaying adaptive and self-healing properties. This review focuses on recent approaches, which exploit reversible covalent and noncovalent chemistry in combination with peptide-based self-assembly.

View Article and Find Full Text PDF

We describe an enzyme-driven dynamic supramolecular peptide system which displays multiple reversible pathways, giving rise to emergent properties that are dictated by environmental conditions and that can be locked in a gel-state.

View Article and Find Full Text PDF

Nitrones undergo dynamic exchange in chloroform at room temperature through two mechanisms-hydrolysis and recombination or hydroxylamine addition/elimination; this dynamic exchange is harnessed to select a nitrone-based bis(amidopyridine) receptor for diacids from a group of four nitrones through its binding to a glutaric acid-based target.

View Article and Find Full Text PDF