Publications by authors named "Jan Rothhardt"

The relentless pursuit of understanding matter at ever-finer scales has pushed optical microscopy to surpass the diffraction limit and realize super-resolution microscopy, which enables visualizing structures shorter than the wavelength of the light emitted by the sample. In the present work, we harnessed extreme ultraviolet beams to create sub-μm grating structures, which were revealed by extreme ultraviolet structured illumination microscopy. We establish that the resolution extension is achievable in the extreme ultraviolet, thereby opening the door to significant resolution enhancement, mainly defined by the wavelength employed.

View Article and Find Full Text PDF

The limited dynamic range of the detector can impede coherent diffractive imaging (CDI) schemes from achieving diffraction-limited resolution. To overcome this limitation, a straightforward approach is to utilize high dynamic range (HDR) imaging through multi-exposure image fusion (MEF). This method involves capturing measurements at different exposure times, spanning from under to overexposure and fusing them into a single HDR image.

View Article and Find Full Text PDF

Structured illumination is essential for high-performance ptychography. Especially in the extreme ultraviolet (EUV) range, where reflective optics are prevalent, the generation of structured beams is challenging and, so far, mostly amplitude-only masks have been used. In this study, we generate a highly structured beam using a phase-shifting diffuser optimized for 13.

View Article and Find Full Text PDF

We examine the interplay between spectral bandwidth and illumination curvature in ptychography. By tailoring the divergence of the illumination, broader spectral bandwidths can be tolerated without requiring algorithmic modifications to the forward model. In particular, a strong wavefront curvature transitions a far-field diffraction geometry to an effectively near-field one, which is less affected by temporal coherence effects.

View Article and Find Full Text PDF

We report the nonlinear pulse compression of a high-power, thulium-doped fiber laser system using a gas-filled hollow-core fiber. The sub-two cycle source delivers 1.3 mJ pulse energy with 80 GW peak power at a central wavelength of 1.

View Article and Find Full Text PDF

We present high-speed and wide-field EUV ptychography at 13.5 nm wavelength using a table-top high-order harmonic source. Compared to previous measurements, the total measurement time is significantly reduced by up to a factor of five by employing a scientific complementary metal oxide semiconductor (sCMOS) detector that is combined with an optimized multilayer mirror configuration.

View Article and Find Full Text PDF

Conventional (CP) and Fourier (FP) ptychography have emerged as versatile quantitative phase imaging techniques. While the main application cases for each technique are different, namely lens-less short wavelength imaging for CP and lens-based visible light imaging for FP, both methods share a common algorithmic ground. CP and FP have in part independently evolved to include experimentally robust forward models and inversion techniques.

View Article and Find Full Text PDF
Article Synopsis
  • A multipass-cell system is used to compress 515 nm wavelength pulses from an Yb:fiber laser, reducing pulse duration from 240 fs to 15.7 fs.
  • The system generates up to 0.44 mJ of energy and 22.4 W of average power at a frequency of 50.8 kHz, achieving over 40% overall efficiency.
  • This technology enables efficient high-energy ultrashort pulses in the visible spectrum, paving the way for advanced high photon flux sources in future applications.
View Article and Find Full Text PDF

In this work, a continuously tunable extreme ultraviolet source delivering a state-of-the-art photon flux of >10 ph/s/eV spanning from 50 eV to 70 eV is presented. The setup consists of a high-power fiber laser with a subsequent multipass cell followed by a waveguide-based high harmonic generation setup. Spectral tuning over the full line spacing is achieved by slightly adjusting the lasers driving pulse energy, utilizing nonlinear propagation effects and pulse chirping.

View Article and Find Full Text PDF

Microscopy with extreme ultraviolet (EUV) radiation holds promise for high-resolution imaging with excellent material contrast, due to the short wavelength and numerous element-specific absorption edges available in this spectral range. At the same time, EUV radiation has significantly larger penetration depths than electrons. It thus enables a nano-scale view into complex three-dimensional structures that are important for material science, semiconductor metrology, and next-generation nano-devices.

View Article and Find Full Text PDF
Article Synopsis
  • Extreme ultraviolet microscopy and wavefront sensing are crucial for advancing ultrafast applications in imaging and diagnostics, particularly at 13.5 nm wavelengths.
  • Ptychography presents a strong solution to challenges in these fields, having been successfully transferred from electron and synchrotron environments to laboratory settings due to improvements in high-harmonic tabletop sources.
  • This review discusses the latest developments in tabletop ptychography, covering hardware options, data analysis algorithms, and various technological applications like wavefront sensing and attosecond pulse characterization.
View Article and Find Full Text PDF

In this work, the experimental realization of a tunable high photon flux extreme ultraviolet light source is presented. This is enabled by high harmonic generation of two temporally delayed driving pulses with a wavelength of 1030 nm, resulting in a tuning range of 0.8 eV at the 19 harmonic at 22.

View Article and Find Full Text PDF

Dual Comb Spectroscopy proved its versatile capabilities in molecular fingerprinting in different spectral regions, but not yet in the ultraviolet (UV). Unlocking this spectral window would expand fingerprinting to the electronic energy structure of matter. This will access the prime triggers of photochemical reactions with unprecedented spectral resolution.

View Article and Find Full Text PDF

In this manuscript we demonstrate a method to reconstruct the wavefront of focused beams from a measured diffraction pattern behind a diffracting mask in real-time. The phase problem is solved by means of a neural network, which is trained with simulated data and verified with experimental data. The neural network allows live reconstructions within a few milliseconds, which previously with iterative phase retrieval took several seconds, thus allowing the adjustment of complex systems and correction by adaptive optics in real time.

View Article and Find Full Text PDF

In this Letter, we present a novel, to the best of our knowledge, single-shot method for characterizing focused coherent beams. We utilize a dedicated amplitude-only mask, in combination with an iterative phase retrieval algorithm, to reconstruct the amplitude and phase of a focused beam from a single measured far-field diffraction pattern alone. In a proof-of-principle experiment at a wavelength of 13.

View Article and Find Full Text PDF

High harmonic sources can provide ultrashort pulses of coherent radiation in the XUV and X-ray spectral region. In this paper we utilize a sub-two-cycle femtosecond fiber laser to efficiently generate a broadband continuum of high-order harmonics between 70 eV and 120 eV. The average power delivered by this source ranges from > 0.

View Article and Find Full Text PDF

Ptychography enables coherent diffractive imaging (CDI) of extended samples by raster scanning across the illuminating XUV/X-ray beam, thereby generalizing the unique advantages of CDI techniques. Table-top realizations of this method are urgently needed for many applications in sciences and industry. Previously, it was only possible to image features much larger than the illuminating wavelength with table-top ptychography although knife-edge tests suggested sub-wavelength resolution.

View Article and Find Full Text PDF

We present an ultrafast fiber laser system delivering 4.6 W average power at 258 nm based on two-stage fourth-harmonic generation in beta barium borate (BBO). The beam quality is close to being diffraction limited with an M value of 1.

View Article and Find Full Text PDF

Few-cycle lasers are essential for many research areas such as attosecond physics that promise to address fundamental questions in science and technology. Therefore, further advancements are connected to significant progress in the underlying laser technology. Here, two-stage nonlinear compression of a 660 W femtosecond fiber laser system is utilized to achieve unprecedented average power levels of energetic ultrashort or even few-cycle laser pulses.

View Article and Find Full Text PDF

Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies.

View Article and Find Full Text PDF

We present a femtosecond laser system delivering up to 100 W of average power at 343 nm. The laser system employs a Yb-based femtosecond fiber laser and subsequent second- and third-harmonic generation in beta barium borate (BBO) crystals. Thermal gradients within these BBO crystals are mitigated by sapphire heat spreaders directly bonded to the front and back surface of the crystals.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores components for scaling average power in intense few-cycle lasers created from modern femtosecond solid-state lasers.
  • Key components like gas-filled waveguides and various types of mirrors are tested at high average power using a kilowatt continuous wave laser.
  • Findings reveal that specific setups, such as hollow capillaries and sapphires, effectively handle kW-level power without significant heating, enabling potential advancements in few-cycle laser technology.
View Article and Find Full Text PDF

Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics.

View Article and Find Full Text PDF

We present characterizations of the attosecond pulse train produced in the high harmonic generation (HHG) from SF6 molecules irradiated by a strong pulsed laser field at 800 nm. At harmonic order 17, we observe a minimum in the amplitude of the emitted spectrum and a corresponding distortion in the phase. Our experimental results are compared to two models: a multicenter interference model focused on the effect of the structure of the SF6 molecule in HHG and a model focused on the interferences between multiple ionization channels in HHG.

View Article and Find Full Text PDF

In this Letter, we report on a femtosecond fiber chirped-pulse-amplification system based on the coherent combination of the output of four ytterbium-doped large-pitch fibers. Each single channel delivers a peak power of about 6.2 GW after compression.

View Article and Find Full Text PDF