Publications by authors named "Jan Rossa"

Claudins regulate paracellular permeability in different tissues. The claudin-binding domain of enterotoxin (cCPE) is a known modulator of a claudin subset. However, it does not efficiently bind to claudin-1 (Cldn1).

View Article and Find Full Text PDF

Claudins (Cldn) form the backbone of tight junction (TJ) strands and thereby regulate paracellular permeability for solutes and water. Polymeric strands are formed by homo- and heterophilic cis- and trans-interactions between claudin protomers. Crystal structures of some claudins have been resolved; however, the mechanism by which claudins assemble into TJ strands remains unclear.

View Article and Find Full Text PDF

Clostridium perfringens enterotoxin (CPE) binds to distinct claudins (Clds), which regulate paracellular barrier functions in endo- and epithelia. The C-terminal domain (cCPE) has the potential for selective claudin modulation, since it only binds to a subset of claudins, e.g.

View Article and Find Full Text PDF

The mechanism of TJ (tight junction) assembly and the structure of TJ strand-forming Cldns (claudins) are unclear. To identify determinants of assembly of blood-brain barrier-related Cldn3 and Cldn5, chimaeric mutants were analysed by cellular reconstitution of TJ strands and live-cell imaging. On the basis of the rescue of mutants deficient for strand formation, we identified Cldn5 residues (Cys128, Ala132, Ile142, Ala163, Ile166 and Leu174) involved in Cldn folding and assembly.

View Article and Find Full Text PDF

The mechanism of tight junction (TJ) assembly and the structure of claudins (Cldn) that form the TJ strands are unclear. This limits the molecular understanding of paracellular barriers and strategies for drug delivery across tissue barriers. Cldn3 and Cldn5 are both common in the blood-brain barrier but form TJ strands with different ultrastructures.

View Article and Find Full Text PDF

Background: Liver biopsy is the reference standard for assessing liver fibrosis and no reliable non-invasive diagnostic approach is available to discriminate between the intermediate stages of fibrosis. Therefore suitable serological biomarkers of liver fibrosis are urgently needed. We used proteomics to identify novel fibrosis biomarkers in hepatitis C patients with different degrees of liver fibrosis.

View Article and Find Full Text PDF

Tight junctions (TJs) regulate paracellular barriers and claudins (Cld) form the backbone of TJ strands. To elucidate the molecular mechanism of claudin polymer formation, TJs were reconstituted by claudin transfection of TJ-free HEK293 cells. Therewith, typical TJ stands can be found at cell-cell contacts.

View Article and Find Full Text PDF

Tight Junctions (TJ) regulate paracellular permeability of tissue barriers. Claudins (Cld) form the backbone of TJ-strands. Pore-forming claudins determine the permeability for ions, whereas that for solutes and macromolecules is assumed to be crucially restricted by the strand morphology (i.

View Article and Find Full Text PDF
Article Synopsis
  • Liver biopsy is the current gold standard for measuring liver fibrosis, but a less invasive method would be beneficial for patient care.
  • Proteomics techniques, especially using two-dimensional gel electrophoresis and isoelectric focusing, can help identify new serological markers in blood, enhancing detection of low abundance proteins.
  • This study identified 23 novel biomarkers related to liver fibrosis in hepatitis C patients, demonstrating the effectiveness of these advanced proteomic methods.
View Article and Find Full Text PDF

Clostridium perfringens causes one of the most common foodborne illnesses, which is largely mediated by the Clostridium perfringens enterotoxin (CPE). The toxin consists of two functional domains. The N-terminal region mediates the cytotoxic effect through pore formation in the plasma membrane of the mammalian host cell.

View Article and Find Full Text PDF

Liposomes are vesicular structures consisting of an aqueous core surrounded by a lipid bilayer. Apart from the cytosol and lysosomes, no other intracellular compartment has been successfully targeted using liposomal delivery. Here, we report the development of liposomes capable of specific targeting to the endoplasmic reticulum (ER) and associated membranes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionss79tvcct8tom0cb4uftn44d1kahf618): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once