Autonomous indoor service robots are supposed to accomplish tasks, like , which involve manipulation actions. Particularly, for complex manipulation tasks which are subject to geometric constraints, spatial information and a rich semantic knowledge about objects, types, and functionality are required, together with the way in which these objects can be manipulated. In this line, this paper presents an ontological-based reasoning framework called Perception and Manipulation Knowledge (PMK) that includes: (1) the modeling of the environment in a standardized way to provide common vocabularies for information exchange in human-robot or robot-robot collaboration, (2) a sensory module to perceive the objects in the environment and assert the ontological knowledge, (3) an evaluation-based analysis of the situation of the objects in the environment, in order to enhance the planning of manipulation tasks.
View Article and Find Full Text PDFComput Med Imaging Graph
July 2014
This paper proposes a method for segmenting the airways from CT scans of the chest to obtain a 3D model that can be used in the virtual bronchoscopy for the exploration and the planning of paths to the lesions. The method is composed of 3 stages: a gross segmentation that reconstructs the main airway tree using adaptive region growing, a finer segmentation that identifies any potential airway region based on a 2D process that enhances bronchi walls using local information, and a final process to connect any isolated bronchus to the main airways using a morphologic reconstruction process and a path planning technique. The paper includes two examples for the evaluation and discussion of the proposal.
View Article and Find Full Text PDF