Publications by authors named "Jan Rohozinski"

Cancer/Testis (C/T) antigens are a group of antigens, expressed in almost all types of cancers, which can elicit an immune response in patients whose cancers express these antigens. They are currently of great interest as targets for the development of cancer biomarkers and the creation of immunotherapies that directly target tumors in patients. Currently there are 280 C/T antigens and their variants listed on the C/T antigen data base.

View Article and Find Full Text PDF

Yolk-sac tumors account for about 20% of ovarian germ cell tumors and occur predominantly in women below 35 years of age. Modern evidence-based treatment strategies have ensured long term post-treatment survival, but with increased survival, attention has been turned to an urgent need for developing fertility sparing treatment strategies. In this report we describe the successful treatment of a young woman who was able to conceive and deliver two children, in spite of the loss of one ovary two years prior to being diagnosed with an ovarian yolk-sac tumor on the remaining ovary.

View Article and Find Full Text PDF

Despite common injury caused by snakebite, snakebite-induced ischemic stroke is rare. We reported on a patient who incurred a large cerebral infarction after being bitten by a Deinagkistrodon acutus, one of the most poisonous snakes in the southwestern of China. Applying 3D computed tomography (CT) of head combined with cerebral angiography examinations showed a large cerebral infarction, hernia in the right brain, developmental abnormalities of the right middle cerebral artery and cerebral artery of right brain.

View Article and Find Full Text PDF

In mammals, gamete production is essential for reproductive success. This is particularly true for males where large quantities of sperm are produced to fertilize a limited number of eggs released by the female. Because of this, new genes associated with increased spermatogenic efficiency have been accumulating throughout the evolution of therian mammals.

View Article and Find Full Text PDF

There is a general agreement that a large subpopulation of serous ovarian cancers arise from the fallopian tube mucosal epithelium. However, there is still some debate as to whether the cancers originate from a secretory or ciliate cell lineage. One well established method for determining the origin of a cell line is to document the expression of genes and proteins that are cell type specific.

View Article and Find Full Text PDF

Uncontrolled cell proliferation and inhibition of apoptosis are considered to be vital for cancer initiation, maintenance, infiltration, metastasis and recurrence after anti-cancer therapy. Here we report the generation of a novel cell line by reprogramming child foreskin fibroblast with the full length apoptosis inhibitor gene PIWIL2. The fibroblasts transfected with PIWIL2 expressed the stem cell markers OCT-4, NANOG, SOX-2, KLF-4 and C-MYC; endoderm marker AFP and GATA6; mesoderm markers ACTA2 and BRACHYURY; and ectoderm markers NESTIN and TUBB3.

View Article and Find Full Text PDF

Background: Von Hippel-Lindau disease (VHL), a heritable autosomal dominant disease characterized by neoplasia in multiple organ systems, has rarely been reported in Asia. We genetically investigated a unique Chinese family with VHL disease and performed an analysis of the VHL protein stability.

Methods: Genomic deoxyribonucleic acid (DNA) extracted from peripheral blood was amplified by polymerase chain reaction (PCR) to three exons of the VHL gene in 9 members of the Chinese family with VHL disease.

View Article and Find Full Text PDF

We sought to biologically characterize and identify a subpopulation of urine-derived stem cells (USCs) with the capacity for multipotent differentiation. We demonstrated that single USCs can expand to a large population with 60-70 population doublings. Nine of 15 individual USC clones expressed detectable levels of telomerase and have long telomeres.

View Article and Find Full Text PDF

It has been previously shown that the spermatogenesis associated retrogene, UTP14c, is expressed in over 50% of normal human ovaries and 80% of ovarian cancers. UTP14c is located on chromosome 13 as an intronless copy of the X-linked housekeeping gene, UTP14a. Like all spermatogenesis associated retrogenes, UTP14c is expressed in the testis and is essential for sperm production.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current evidence for the genetic basis of stress urinary incontinence (SUI).

Recent Findings: Based on epidemiologic data, there appears to be a genetic predisposition for the development of SUI. One thought is that there are abnormalities in expression of extracellular matrix (ECM) proteins leading to alterations in the composition of the ECM.

View Article and Find Full Text PDF

Background: Ovarian cancer is the second most prevalent gynecologic cancer in women. However, it is by far the most lethal. This is generally attributed to the absence of easily detectable markers specific to ovarian cancers that can be used for early diagnosis and specific therapeutic targets.

View Article and Find Full Text PDF

In this study a novel method of simultaneous gene transfection and cell delivery based on inkjet printing technology is described. Plasmids encoding green fluorescent protein (GFP) were coprinted with living cells (porcine aortic endothelial [PAE] cells) through the ink cartridge nozzles of modified commercial inkjet printers. Agarose gel electrophoresis analysis showed there was no obvious structural alteration or damage to these plasmids after printing.

View Article and Find Full Text PDF

The oocyte-specific G-protein-coupled receptor 3 (GPR3) gene is essential in maintaining meiotic arrest in mouse oocytes. Disruption of GPR3 results in early depletion of oocytes and thus premature ovarian aging. To determine if mutations of the GPR3 gene were present in 82 predominantly North American caucasian women with premature ovarian failure (POF), we used denaturing high-performance liquid chromatography and DNA sequencing to detect sequence variants.

View Article and Find Full Text PDF

The mouse retrogene Utp14b is essential for male fertility, and a mutation in its sequence results in the sterile juvenile spermatogonial depletion (jsd) phenotype. It is a retrotransposed copy of the Utp14a gene, which is located on the X chromosome, and is inserted within an intron of the autosomal acyl-CoA synthetase long-chain family member 3 (Acsl3) gene. To elucidate the roles of the Utp14 genes in normal spermatogenic cell development as a basis for understanding the defects that result in the jsd phenotype, we analyzed the various mRNAs produced from the Utp14b retrogene and their expression in different cell types.

View Article and Find Full Text PDF

Objective: To determine whether perturbations of the growth differentiating factor-9 (GDF9) gene are associated with premature ovarian failure (POF).

Design: Mutational analysis of the GDF9 gene in 61 women with POF.

Setting: Academic institution.

View Article and Find Full Text PDF

In the mouse, Utp14b is a retrogene transposed to an intron of Acsl3 (long-chain-fatty-acid coenzyme A ligase 3) on mouse chromosome 1. It represents a copy of Utp14a, a ubiquitously expressed, X-linked gene involved in 18S rRNA synthesis. The Utp14b is specifically expressed in male germ cells and, when mutated in the jsd (juvenile spermatogonial depletion) mouse, results in early spermatogenic arrest and male infertility.

View Article and Find Full Text PDF

The recessive juvenile spermatogonial depletion (jsd) mutation results in a single wave of spermatogenesis, followed by failure of type A spermatogonia to differentiate, resulting in adult male sterility. We have identified a jsd-specific rearrangement in the mouse homologue of the Saccharomyces cerevisiae gene UTP14, termed mUtp14b. Confirmation that mUtp14b underlies the jsd phenotype was obtained by transgenic bacterial artificial chromosome (BAC) rescue.

View Article and Find Full Text PDF

Gene targeting via homologous recombination in mouse ES cells is now a routine method for addressing gene function in vivo. Several hundred genes mapping to all autosomes and the X chromosome have been mutated and analyzed in this way. In contrast, despite repeated attempts in several laboratories, including our own, there have been no reports of successful targeting of mouse Y chromosome genes.

View Article and Find Full Text PDF