Objectives: There is a lack of clinically relevant measures for quantification of maladaptive mechanisms of the nociceptive system leading to chronic pain. Recently, we developed a method that tracks nociceptive detection thresholds (NDTs) using intraepidermal electrical stimulation. In this study, we explored the feasibility of using this NDT method in patients with persistent spinal pain syndrome type 2 (PSPS-T2) and its potential to enable observation of altered nociceptive processing induced by dorsal root ganglion (DRG) stimulation.
View Article and Find Full Text PDFThe electrical contact between a substrate embedded microelectrode and a cultured neuron depends on the geometry of the neuron-electrode interface. Interpretation and improvement of these contacts requires proper modeling of all coupling mechanisms. In literature, it is common practice to model the neuron-electrode contact using lumped circuits in which large simplifications are made in the representation of the interface geometry.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2002
Extracellular stimulation of single cultured neurons which are completely sealing a microelectrode is usually performed using anodic or biphasic currents of at least 200 nA. However, recently obtained experimental data demonstrate the possibility to stimulate a neuron using cathodic current pulses with less amplitude. Also, a stimulation window is observed.
View Article and Find Full Text PDFAmplitudes and shapes of extracellular recordings from single neurons cultured on a substrate embedded microelectrode depend not only on the volume conducting properties of the neuron-electrode interface, but might also depend on the distribution of voltage-sensitive channels over the neuronal membrane. In this paper, finite-element modeling is used to quantify the effect of these channel distributions on the neuron-electrode contact. Slight accumulation or depletion of voltage-sensitive channels in the sealing membrane of the neuron results in various shapes and amplitudes of simulated extracellular recordings.
View Article and Find Full Text PDF