Fast separation of DNA and detection of protein/DNA complexes are important in many state-of-the-art molecular medicine technologies, like the production of gene vaccines or medical diagnostics. Here, we describe a nanofluidic chip-based technique for fast, efficient, and virtually label-free detection and separation of protein/DNA and drug/DNA complexes and topological DNA variants. The mechanism is based on a continuous-flow dielectrophoresis at a nanoslit and allows efficient separation of small DNA fragments (<7,000 base pairs) and fast detection of DNA complexes within 1 min.
View Article and Find Full Text PDFThe efficient detection, separation and purification of topological and (protein-)complexed DNA variants is mandatory for many state-of-the-art molecular medicine technologies, like medical diagnostics, gene- and cancer-therapy as well as plasmid vaccination. Here, we present the proof-of-concept of a novel micro-nanofluidic device for a fast and efficient, continuous-flow, and virtually label-free detection/purification protocol that goes beyond the standard methods of electrophoretic mobility shift assays, capillary electrophoresis and affinity chromatography. Based on dielectrophoretic trapping, analyte mixtures of small linear DNA-fragments (2.
View Article and Find Full Text PDFWe conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.
View Article and Find Full Text PDFIn single cell analysis (SCA), individual cell-specific properties and inhomogeneous cellular responses are being investigated that is not subjected to ensemble-averaging or heterogeneous cell population effects. For proteomic single cell analysis, ultra-sensitive and reproducible separation and detection techniques are essential. Microfluidic devices combined with UV laser induced fluorescence (UV-LIF) detection have been proposed to fulfill these requirements.
View Article and Find Full Text PDFMixing and demixing (separation) are essential tasks in microfluidic devices, which seem to be contrary in nature. Accordingly, completely different strategies and devices are usually employed for their realization. We here present a microfluidic device which is capable of performing both these tasks as it can be operated in either mixing or demixing mode.
View Article and Find Full Text PDFDielectrophoresis is a non-destructive, label-free method to manipulate and separate (bio-) particles and macromolecules. The mechanism is based on the movement of polarizable objects in an inhomogeneous electric field. Here, microfluidic devices are reviewed that generate those inhomogeneous electric fields with insulating posts or constrictions, an approach called electrodeless or insulator-based dielectrophoresis.
View Article and Find Full Text PDFContinuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve.
View Article and Find Full Text PDFDielectrophoresis is a convenient tool for controlled manipulation of DNA with numerous applications, including DNA trapping, stretching, and separation. However, the mechanisms behind the dielectrophoretic properties of DNA are still under debate, and the role of conformation has not been addressed yet. Here, we quantify dielectrophoretic effects on DNA by determining its polarizability from microfluidic single molecule trapping experiments.
View Article and Find Full Text PDFLife cell imaging of bacterial cells over long times is very challenging because of the small dimensions and the need for a liquid environment assuring cell viability. In order to obtain space- and time-resolved information about protein dynamics, high resolution time-lapse fluorescence images (TLFI) of single bacterial cells were recorded in a poly(dimethylsiloxane) (PDMS) microfluidic chip. A new gradient coating technique was applied to ensure cell loading.
View Article and Find Full Text PDFUltramicroscopy
September 2010
We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.
View Article and Find Full Text PDFRecently, the counter intuitive migration phenomenon of absolute negative mobility (ANM) has been demonstrated to occur for colloidal particles in a suitably arranged post array within a microfluidic device [1]. This effect is based on the interplay of Brownian motion, nonlinear dynamics induced through microstructuring, and nonequilibrium driving, and results in a particle movement opposite to an applied static force. Simultaneously, the migration of a different particle species along the direction of the static force is possible [19], thus providing a new tool for particle sorting in microfluidic device format.
View Article and Find Full Text PDFAlthough separation of polymers based on the combination of dielectrophoretic trapping and electrophoretic forces was proposed 15 years ago, experimental proof has not yet been reported. Here, we address this problem for long DNA fragments in a simple and easy-to-fabricate microfluidic device, in which the DNA is manipulated by electrophoresis and by electrodeless dielectrophoresis. By slowly increasing the strength of the dielectrophoretic traps in the course of the separation experiments, we are able to perform efficient and fast DNA separation according to length for two different DNA conformations: linear DNA (lambda (48.
View Article and Find Full Text PDFMicrofluidic and lab-on-a-chip devices have attracted widespread interest in separation sciences and bioanalysis. Recent designs in microfluidic devices extend common separation concepts by exploiting new phenomena for molecular dynamics on a length scale of 10 mum and below, giving rise to novel manipulation tools and nonintuitive phenomena for microseparations. Here, we focus on three very recent developments for bioseparations based on tailored microfluidic systems: Single cell navigation, trapping and steering with subsequent on-chip lysis, protein separation and LIF detection (Section 3.
View Article and Find Full Text PDFNoise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move in a direction opposite to the net acting force ('absolute negative mobility') as a result of an interplay between thermal noise, a periodic and symmetric microstructure, and a biased alternating-current electric field. This counterintuitive phenomenon could be used for bioanalytical purposes, for example in the separation and fractionation of colloids, biological molecules and cells.
View Article and Find Full Text PDFControl of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecules of varying chain lengths.
View Article and Find Full Text PDF