Aquaculture is growing rapidly worldwide, and sustainability is dependent on an understanding of current genetic variation and levels of connectivity among populations. Genetic data are essential to mitigate the genetic and ecological impacts of aquaculture on wild populations and guard against unintended human-induced loss of intraspecific diversity in aquacultured lines. Impacts of disregarding genetics can include loss of diversity within and between populations and disruption of local adaptation patterns, which can lead to a decrease in fitness.
View Article and Find Full Text PDFThe notothenioid family Bathydraconidae is a poorly understood family of fishes endemic to the Southern Ocean. There is especially little information on Akarotaxis nudiceps, one of the deepest-dwelling and least fecund bathydraconid species. Using genetic and morphological data, we document and describe the larval stages of this unique species, offer a novel characteristic to distinguish it from the morphologically similar bathydraconid Prionodraco evansii and use the sampling locations to infer a possible spawning area of A.
View Article and Find Full Text PDFGlobally, tunas are among the most valuable fish stocks, but are also inherently difficult to monitor and assess. Samples of larvae of Western Atlantic bluefin tuna Thunnus thynnus (Linnaeus, 1758) from standardized annual surveys in the northern Gulf of Mexico provide a potential source of "offspring" for close-kin mark-recapture (CKMR) estimates of abundance. However, the spatial patchiness and highly skewed numbers of larvae per tow suggest sampled larvae may come from a small number of parents, compromising the precision of CKMR.
View Article and Find Full Text PDFResilience to climate change depends on a species' adaptive potential and phenotypic plasticity. The latter can enhance survival of individual organisms during short periods of extreme environmental perturbations, allowing genetic adaptation to take place over generations. Along the U.
View Article and Find Full Text PDFGenomic methodologies offer unprecedented opportunities for statistically robust studies of species broadly distributed in environments conducive to high gene flow, providing valuable information for wildlife conservation and management. Here, we sequence restriction site-associated DNA to characterize genome-wide single nucleotide polymorphisms (SNPs) in a broadly distributed and highly migratory large pelagic fish, striped marlin (). Assessment of over 4,000 SNPs resolved spatiotemporal patterns of genetic connectivity throughout the species range in the Pacific and, for the first time, Indian oceans.
View Article and Find Full Text PDFWe studied the effects of metabolic cold adaptation (MCA) in two populations of a eurythermal species, spotted seatrout () along the U.S. East Coast.
View Article and Find Full Text PDFThe life-history characteristics of blueline tilefish make them particularly vulnerable to overfishing. Although North Carolina, U.S.
View Article and Find Full Text PDFHighly migratory, cosmopolitan oceanic sharks often exhibit complex movement patterns influenced by ontogeny, reproduction, and feeding. These elusive species are particularly challenging to population genetic studies, as representative samples suitable for inferring genetic structure are difficult to obtain. Our study provides insights into the genetic population structure one of the most abundant and wide-ranging oceanic shark species, the blue shark by sampling the least mobile component of the populations, i.
View Article and Find Full Text PDFThis article documents the addition of 473 microsatellite marker loci and 71 pairs of single-nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Barteria fistulosa, Bombus morio, Galaxias platei, Hematodinium perezi, Macrocentrus cingulum Brischke (a.k.
View Article and Find Full Text PDFThe sandbar shark, Carcharhinus plumbeus, is a large, cosmopolitan, coastal species. Females are thought to show philopatry to nursery grounds while males potentially migrate long distances, creating an opportunity for male-mediated gene flow that may lead to discordance in patterns revealed by mitochondrial DNA (mtDNA) and nuclear markers. While this dynamic has been investigated in elasmobranchs over small spatial scales, it has not been examined at a global level.
View Article and Find Full Text PDFWe used 320 young-of-the-year (YOY) specimens of the highly migratory and overfished Atlantic bluefin tuna, Thunnus thynnus, Linnaeus 1758, to evaluate the hypothesis that Atlantic bluefin tuna comprises 2 stocks with spawning grounds in the Gulf of Mexico and in the Mediterranean Sea. Significant genetic differentiation at 8 nuclear microsatellite loci (F(ST) = 0.0059, P = 0.
View Article and Find Full Text PDFGenetic variation was surveyed at nine microsatellite loci and the mitochondrial control region (868 bp) to test for the presence of genetic stock structure in young-of-the-year Atlantic bluefin tuna (Thunnus thynnus thynnus) from the Mediterranean Sea. Bluefin tuna were sampled over a period of 5 years from the Balearic and Tyrrhenian seas in the western basin of the Mediterranean Sea, and from the southern Ionian Sea in the eastern basin of the Mediterranean Sea. Analyses of multilocus microsatellite genotypes and mitochondrial control region sequences revealed no significant heterogeneity among collections taken from the same location in different years; however, significant spatial genetic heterogeneity was observed across all samples for both microsatellite markers and mitochondrial control region sequences (FST=0.
View Article and Find Full Text PDF