Parkinson's disease motor symptoms are treated with levodopa, but long-term treatment leads to disabling dyskinesia. Altered synaptic transmission and maladaptive plasticity of corticostriatal glutamatergic projections play a critical role in the pathophysiology of dyskinesia. Because the noble gas xenon inhibits excitatory glutamatergic signaling, primarily through allosteric antagonism of the N-methyl-d-aspartate receptors, we aimed to test its putative antidyskinetic capabilities.
View Article and Find Full Text PDFDespite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease.
View Article and Find Full Text PDFBackground: Evidence supports the use of ex vivo lung perfusion (EVLP) as a platform for active reconditioning before transplantation to increase the potential donor pool and to reduce the incidence of primary graft dysfunction. A promising reconditioning strategy is the administration of inhaled noble gases based on their organoprotective effects. Our aim was to validate a porcine warm ischemic lung injury model and investigate postconditioning with argon (Ar) or xenon (Xe) during prolonged EVLP.
View Article and Find Full Text PDFBackground: Despite numerous pharmacological approaches, there are no common analgesic drugs that produce meaningful relief for the majority of patients with neuropathic pain. Although nitrous oxide (N2O) is a weak analgesic that acts via opioid-dependent mechanisms, it is also an antagonist of the N-methyl-D-aspartate receptor (NMDAR). The NMDAR plays a critical role in the development of pain sensitization induced by nerve injury.
View Article and Find Full Text PDFBackground: New gas therapies using inert gases such as xenon and argon are being studied, which would require chronically administered repeating doses. The pharmacokinetics of this type of administration has not been addressed in the literature.
Methods: A physiologically based pharmacokinetics (PBPK) model for humans, pigs, mice, and rats has been developed to investigate the unique aspects of the chronic administration of inert gas therapies.
Background: In recent years, the glutamate theory of alcoholism has emerged as a major theory in the addiction research field and N-methyl-d-aspartate (NMDA) receptors have been shown to play a major role in alcohol craving and relapse. The NMDA receptors are considered as the primary side of action of the anesthetic gases xenon (Xe) and nitrous oxide (N2 O). Despite the rapid on/off kinetics of these gases on the NMDA receptor, a brief gas exposure can induce an analgesic or antireward effect lasting several days.
View Article and Find Full Text PDFAlthough chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen.
View Article and Find Full Text PDFCigarette smoke (CS) imposes a strong oxidative burden on exposed tissues resulting in a severely disturbed oxidant/antioxidant balance, which in the context of chronic exposure is assumed to be a key contributor to CS-related diseases. Because of its emerging central role in orchestrating the general cellular antioxidant response, the pathway leading to the activation of the transcription factor Nrf2 has received mounting attention over the past decade in investigations aimed at elucidating CS-induced pathophysiological mechanisms. To comprehensively characterize the impact of Nrf2 in acute and subchronic smoking scenarios, Nrf2(-/-) mice and their wild-type (wt) ICR littermates were exposed to either ambient air (sham exposure) or one of three doses of CS for up to 5 months, with two postexposure endpoints of 1 and 13 days.
View Article and Find Full Text PDF