Publications by authors named "Jan Picha"

Preptin, a 34-amino acid peptide derived from pro-IGF2, is believed to influence various physiological processes, including insulin secretion and the regulation of bone metabolism. Despite its recognized involvement, the precise physiological role of preptin remains enigmatic. To address this knowledge gap, we synthesized 16 analogs of preptin, spanning a spectrum from full-length forms to fragments, and conducted comprehensive comparative activity evaluations alongside native human, mouse and rat preptin.

View Article and Find Full Text PDF

The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold.

View Article and Find Full Text PDF

Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide.

View Article and Find Full Text PDF

Preptin is a 34-amino-acid-long peptide derived from the E-domain of a precursor of insulin-like growth factor 2 (pro-IGF2) with bone-anabolic and insulin secretion amplifying properties. Here, we describe the synthesis, structures, and biological activities of six shortened analogues of human preptin. Eight- and nine-amino-acid-long peptide amides corresponding to the C-terminal part of human preptin were stabilised by two types of staples to induce a higher proportion of helicity in their secondary structure.

View Article and Find Full Text PDF
Article Synopsis
  • Insulin remains essential for diabetes management, and there's a push for new analogues that behave more like natural insulin and are more stable.
  • Researchers engineered 48 insulin analogues by modifying specific parts of the insulin structure to improve their effectiveness at binding to insulin receptors.
  • One promising analogue showed over 3 times better binding to the metabolic insulin receptor and proved more resistant to aggregation and more effective in animal tests compared to regular human insulin, suggesting it could be worth exploring in clinical settings.
View Article and Find Full Text PDF

A series of N-terminally Fmoc-protected linkers of the general formula Fmoc-X-CO-O-Y-COOH have been prepared, where X is -NH-CH -CH - or -p-(aminomethyl)phenyl- and Y is -(CH ) - (n is 1 or 4) or -p-(methyl)phenyl-. These linkers can easily be covalently attached via their C-terminal carboxyl group to a resin bearing a free amino group. After cleavage of the N-terminal Fmoc group, the linkers can be extended by standard solid-phase peptide synthesis techniques.

View Article and Find Full Text PDF

Chromatographic performance of a chiral stationary phase is significantly influenced by the employed solid support. Properties of the most commonly used support, silica particles, such as size and size distribution, and pore size are of utmost importance for both superficially porous particles and fully porous particles. In this work, we have focused on evaluation of fully porous particles from three different vendors as solid supports for a brush-type chiral stationary phase based on 9-O-tert-butylcarbamoyl quinidine.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity.

View Article and Find Full Text PDF

In the enantiomeric separation of highly polar compounds, a traditionally challenging task for high-performance liquid chromatography, ion-exchange chiral stationary phases have found the main field of application. In this contribution, we present a series of novel anion-exchange-type chiral stationary phases for enantiomer separation of protected amino phosphonates and N-protected amino acids. Two of the prepared selectors possessed a double and triple bond within a single molecule.

View Article and Find Full Text PDF

Human insulin-like growth factor 1 (IGF-1) is a 70 amino acid protein hormone, with key impact on growth, development, and lifespan. The physiological and clinical importance of IGF-1 prompted challenging chemical and biological trials toward the development of its analogs as molecular tools for the IGF-1 receptor (IGF1-R) studies and as new therapeutics. Here, we report a new method for the total chemical synthesis of IGF-1 analogs, which entails the solid-phase synthesis of two IGF-1 precursor chains that is followed by the Cu-catalyzed azide-alkyne cycloaddition ligation and by biomimetic formation of a native pattern of disulfides.

View Article and Find Full Text PDF

The rise of CuI-catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in-house preparation of a set of five Fmoc azido amino acids: β-azido l-alanine and d-alanine, γ-azido l-homoalanine, δ-azido l-ornithine and ω-azido l-lysine.

View Article and Find Full Text PDF

We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds.

View Article and Find Full Text PDF

We present a trifunctional scaffold designed for the solid-phase synthesis of trimodal compounds. This scaffold holds two alkyne arms in a free and TIPS-protected form for consecutive CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition), one Fmoc-protected hydrazide arm for reaction with aldehydes, and one carboxylic acid arm with CF₂ groups for attachment to the resin and (19)F-NMR quantification. This scaffold was attached to a resin and derivatized with model azides and aliphatic, electron-rich or electron-poor aromatic aldehydes.

View Article and Find Full Text PDF

Thirteen mono-N-acyl derivatives of 2,6-diaminopimelic acid (DAP)-new potential inhibitors of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.

View Article and Find Full Text PDF

Betaine-homocysteine S-methyltransferase (BHMT) is an important zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. In the liver, BHMT performs to half of the homocysteine remethylation. In this study, we systematically investigated the tolerance of the enzyme for modifications at the "homocysteine" part of the previously reported potent inhibitor (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic acid (1).

View Article and Find Full Text PDF

Methionyl aminopeptidases (MetAPs) are metallo-dependent proteases responsible for removing of N-terminal methionine residue of peptides and proteins during protein maturation and activation. In this report we use a comprehensive strategy to screen the substrate specificity of three methionyl aminopeptidases: Homo sapiens MetAP-1, Homo sapiens MetAP-2 and Escherichia coli MetAP-1. By utilizing a 65-membered fluorogenic substrate library consisting of natural and unnatural amino acids we established detailed substrate preferences of each enzyme in the S1 pocket.

View Article and Find Full Text PDF

Ligands containing bulky aliphatic P1 residues exhibit a high affinity towards cytosolic leucine aminopeptidase, a bizinc protease of biomedical significance. According to this specificity, a series of phosphonic and phosphinic compounds have been put forward as novel putative inhibitors of the enzyme. These phosphonic and phosphinic compounds were derivatives of methionine and norleucine as both single amino acids and dipeptides.

View Article and Find Full Text PDF

In the present study, we describe in detail the synthesis of a relatively rare class of phosphorus compounds, α-carboxyphosphinopeptides. We prepared several norleucine-derived α-carboxyphosphinic pseudopeptides of the general formula Nle-Ψ[PO(OH)]-Gly. These compounds could have important applications as transition state-mimicking inhibitors for methionine or leucine aminopeptidases or other enzymes.

View Article and Find Full Text PDF

Class of monoquaternary pyridinium oximes was in vitro tested as potential reactivators of acetylcholinesterase (AChE; EC 3.1.1.

View Article and Find Full Text PDF

In this work, in vitro potency of novel serie of monoquaternary pyridinium oximes to reactivate cyclosarin-inhibited acetylcholinesterase (AChE) was tested. Currently available oximes (pralidoxime, obidoxime, trimedoxime, HI-6 and BI-6) were used as oximes for comparison. As resulted, none of tested new reactivators was able to reactivate AChE inhibited by cyclosarin.

View Article and Find Full Text PDF

Aromatic oximes are reduced in aqueous solution in a four-electron process. The reducible species in the pH range 5-8 is a diprotonated form of the oxime. This species is generated in the course of electrolysis in the vicinity of the electrode surface from the adsorbed neutral form of the oxime.

View Article and Find Full Text PDF