Background: Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease.
Results: Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly.
The vector competence of blood-feeding arthropods is influenced by the interaction between pathogens and the immune system of the vector. The Toll and IMD (immune deficiency) signaling pathways play a key role in the regulation of innate immunity in both the Drosophila model and blood-feeding insects. However, in ticks (chelicerates), immune determination for pathogen acquisition and transmission has not yet been fully explored.
View Article and Find Full Text PDFLyme disease, a tick-borne illness caused by spirochetes, poses a significant threat to public health. While acaricides effectively control ticks on pets and livestock, their impact on pathogen transmission is often unclear. This study investigated the acaricidal efficacy of fipronil against ticks and its potential to block transmission.
View Article and Find Full Text PDFFront Cell Infect Microbiol
August 2024
Haptoglobin is a plasma protein of mammals that plays a crucial role in vascular homeostasis by binding free haemoglobin released from ruptured red blood cells. can exploit this by internalising haptoglobin-haemoglobin complex to acquire host haem. Here, we investigated the impact of haptoglobin deficiency (Hp-/-) on infection and the parasite´s capacity to internalise haemoglobin in a Hp-/- mouse model.
View Article and Find Full Text PDFDespite the significant health risks associated with infestations in humans, they are often overlooked. This study investigated a household case of infestation and explored the resulting clinical manifestations and risk of infection in family members. Microfluidic PCR was employed for high-throughput screening of pathogens in collected mites and blood samples from both chickens and family members.
View Article and Find Full Text PDFTicks are blood-feeding arachnids that are known to transmit various pathogenic microorganisms to their hosts. During blood feeding, ticks activate their metabolism and immune system to efficiently utilise nutrients from the host's blood and complete the feeding process. In contrast to insects, in which the fat body is known to be a central organ that controls essential metabolic processes and immune defense mechanisms, the function of the fat body in tick physiology is still relatively unexplored.
View Article and Find Full Text PDFThe control of ticks through vaccination offers a sustainable alternative to the use of chemicals that cause contamination and the selection of resistant tick strains. However, only a limited number of anti-tick vaccines have reached commercial realization. In this sense, an antigen effective against different tick species is a desirable target for developing such vaccines.
View Article and Find Full Text PDFMol Cell Proteomics
November 2023
Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens.
View Article and Find Full Text PDFSalivary glands are vital to tick feeding success and also play a crucial role in tick-borne pathogen transmission. In previous studies of Ixodes scapularis salivary glands, we demonstrated that saliva-producing type II and III acini are innervated by neuropeptidergic axons which release different classes of neuropeptides via their terminals (Šimo et al., 2009b, 2013).
View Article and Find Full Text PDFDermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts.
View Article and Find Full Text PDFGenomes of ticks display reductions, to various extents, in genetic coding for enzymes of the haem biosynthetic pathway. Here, we mined available transcriptomes of soft tick species and identified transcripts encoding only half of the enzymes involved in haem biosynthesis. Transcripts identified across most species examined were those coding for porphobilinogen synthase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, and ferrochelatase.
View Article and Find Full Text PDFIn addition to being vectors of pathogenic bacteria, ticks also harbor intracellular bacteria that associate with ticks over generations, aka symbionts. The biological significance of such bacterial symbiosis has been described in several tick species but its function in is not understood. We have previously shown that ticks are primarily inhabited by a single species of symbiont, , an intracellular bacterium that resides and reproduces mainly in the mitochondria of ovaries of fully engorged females.
View Article and Find Full Text PDFThe Propagation of spp. and / spp. vertebrate blood stages relies on the mediated acquisition of nutrients available within the host's red blood cell (RBC).
View Article and Find Full Text PDFTicks are blood-feeding ectoparasites with distinct genomic reductions, inevitably linking them to a parasitic lifestyle. Ticks have lost the genomic coding and, thus, biochemical capacity to synthesize heme, an essential metabolic cofactor, de novo. Instead, they are equipped with acquisition and distribution pathways for reuse of host heme.
View Article and Find Full Text PDFIt has been demonstrated that impairing protein synthesis using drugs targeted against tRNA amino acid synthetases presents a promising strategy for the treatment of a wide variety of parasitic diseases, including malaria and toxoplasmosis. This is the first study evaluating tRNA synthetases as potential drug targets in ticks. RNAi knock-down of all tested tRNA synthetases had a strong deleterious phenotype on feeding.
View Article and Find Full Text PDFAn anti-tick mRNA cocktail vaccine promotes tick detachment and prevents transmission of tick-borne infection in guinea pigs (Sajid ).
View Article and Find Full Text PDFTicks are blood-feeding arachnids transmitting a variety of pathogens to humans and animals. A unique trait in tick physiology is their ability to engorge and digest large amounts of host blood, ensuring their high reproductive potential. Activation of the blood digestive machinery in the tick gut, as well as processes controlling maturation of ovaries, are triggered upon blood meal uptake by still largely unknown mechanisms.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
During feeding on vertebrate hosts, ticks secrete saliva composed of a rich cocktail of bioactive molecules modulating host immune responses. Although most of the proteinaceous fraction of tick saliva is of little immunogenicity, repeated feeding of ticks on mammalian hosts may lead to impairment of tick feeding, preventing full engorgement. Here, we challenged rabbits with repeated feeding of both nymphs and adults and observed the formation of specific antibodies against several tick salivary proteins.
View Article and Find Full Text PDF