Publications by authors named "Jan Paralic"

The focus of this study, and the subject of this article, resides in the conceptually funded usability evaluation of an application of descriptive models to a specific dataset obtained from the East Slovak Institute of Heart and Vascular Diseases targeting cardiovascular patients. Delving into the current state-of-the-art practices, we examine the extent of cardiovascular diseases, descriptive data analysis models, and their practical applications. Most importantly, our inquiry focuses on exploration of usability, encompassing its application and evaluation methodologies, including Van Welie's layered model of usability and its inherent advantages and limitations.

View Article and Find Full Text PDF

Emotions are an integral part of human life. We know many different definitions of emotions. They are most often defined as a complex pattern of reactions, and they could be confused with feelings or moods.

View Article and Find Full Text PDF

Deep learning methods have proven to be effective for multiple diagnostic tasks in medicine and have been performing significantly better in comparison to other traditional machine learning methods. However, the black-box nature of deep neural networks has restricted their use in real-world applications, especially in healthcare. Therefore, explainability of the machine learning models, which focuses on providing of the comprehensible explanations of model outputs, may affect the possibility of adoption of such models in clinical use.

View Article and Find Full Text PDF

Today, there are many parameters used for cardiovascular risk quantification and to identify many of the high-risk subjects; however, many of them do not reflect reality. Modern personalized medicine is the key to fast and effective diagnostics and treatment of cardiovascular diseases. One step towards this goal is a better understanding of connections between numerous risk factors.

View Article and Find Full Text PDF

(1) Objectives: We aimed to identify clusters of physical frailty and cognitive impairment in a population of older primary care patients and correlate these clusters with their associated comorbidities. (2) Methods: We used a latent class analysis (LCA) as the clustering technique to separate different stages of mild cognitive impairment (MCI) and physical frailty into clusters; the differences were assessed by using a multinomial logistic regression model. (3) Results: Four clusters (latent classes) were identified: (1) highly functional (the mean and SD of the "frailty" test 0.

View Article and Find Full Text PDF

Introduction: Currently, just a few major parameters are used for cardiovascular (CV) risk quantification to identify many of the high-risk subjects; however, they leave a lot of them with an underestimated level of CV risk which does not reflect the reality.

Material And Methods: The submitted study design of the Kosice Selective Coronarography Multiple Risk (KSC MR) Study will use computer analysis of coronary angiography results of admitted patients along with broad patients' characteristics based on questionnaires, physical findings, laboratory and many other examinations.

Results: Obtained data will undergo machine learning protocols with the aim of developing algorithms which will include all available parameters and accurately calculate the probability of coronary artery disease.

View Article and Find Full Text PDF

BACKGROUND Physical frailty, cognitive impairment, and symptoms of anxiety and depression frequently co-occur in later life, but, to date, each has been assessed separately. The present study assessed their patterns in primary care patients aged ≥60 years. MATERIAL AND METHODS This cross-sectional study evaluated 263 primary care patients aged ≥60 years in eastern Croatia in 2018.

View Article and Find Full Text PDF

In this paper we present a decision support system, which has been designed and implemented on the case-based reasoning principles. Our decision support system is being implemented in tight cooperation with the cardiologist, who represents the main future users of the system. Our system enables its user to find the most similar historical cases to a new patient, suggest the most probable result of the potential coronary angiography examination and also provide various useful visualizations to the cardiologist, who is responsible for the final decision about recommending the coronary angiography or not for the new patient.

View Article and Find Full Text PDF

Objective: Hepatitis E infection is one of the most frequent acute hepatitis in the world. Currently five human genotypes with different geographical distributions and distinct epidemiologic patterns are identified. In Slovakia, only rare cases of hepatitis E have been reported in recent years.

View Article and Find Full Text PDF

Data analytics represents a new chance for medical diagnosis and treatment to make it more effective and successful. This expectation is not so easy to achieve as it may look like at a first glance. The medical experts, doctors or general practitioners have their own vocabulary, they use specific terms and type of speaking.

View Article and Find Full Text PDF

Background: There is potential for medical research on the basis of routine data used from general practice electronic health records (GP eHRs), even in areas where there is no common GP research platform. We present a case study on menopausal women with hypertension and metabolic syndrome (MS). The aims were to explore the appropriateness of the standard definition of MS to apply to this specific, narrowly defined population group and to improve recognition of women at high CV risk.

View Article and Find Full Text PDF