Automated and high-throughput quantum chemical investigations into chemical processes have become feasible in great detail and broad scope. This results in an increase in complexity of the tasks and in the amount of generated data. An efficient and intuitive way for an operator to interact with these data and to steer virtual experiments is required.
View Article and Find Full Text PDFThe software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network.
View Article and Find Full Text PDFData-driven synthesis planning has seen remarkable successes in recent years by virtue of modern approaches of artificial intelligence that efficiently exploit vast databases with experimental data on chemical reactions. However, this success story is intimately connected to the availability of existing experimental data. It may well occur in retrosynthetic and synthesis design tasks that predictions in individual steps of a reaction cascade are affected by large uncertainties.
View Article and Find Full Text PDFAutonomously exploring chemical reaction networks with first-principles methods can generate vast data. Especially autonomous explorations without tight constraints risk getting trapped in regions of reaction networks that are not of interest. In many cases, these regions of the networks are only exited once fully searched.
View Article and Find Full Text PDFQuantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2022
Fueled by advances in hardware and algorithm design, large-scale automated explorations of chemical reaction space have become possible. Here, we present our approach to an open-source, extensible framework for explorations of chemical reaction mechanisms based on the first-principles of quantum mechanics. It is intended to facilitate reaction network explorations for diverse chemical problems with a wide range of goals such as mechanism elucidation, reaction path optimization, retrosynthetic path validation, reagent design, and microkinetic modeling.
View Article and Find Full Text PDFFor many chemical processes the accurate description of solvent effects are vitally important. Here, we describe a hybrid ansatz for the explicit quantum mechanical description of solute-solvent and solvent-solvent interactions based on subsystem density functional theory and continuum solvation schemes. Since explicit solvent molecules may compromise the scalability of the model and transferability of the predicted solvent effect, we aim to retain both, for different solutes as well as for different solvents.
View Article and Find Full Text PDFQuantum mechanical methods have been well-established for the elucidation of reaction paths of chemical processes and for the explicit dynamics of molecular systems. While they are usually deployed in routine manual calculations on reactions for which some insights are already available (typically from experiment), new algorithms and continuously increasing capabilities of modern computer hardware allow for exploratory open-ended computational campaigns that are unbiased and therefore enable unexpected discoveries. Highly efficient and even automated procedures facilitate systematic approaches toward the exploration of uncharted territory in molecular transformations and dynamics.
View Article and Find Full Text PDFModern computational chemistry has reached a stage at which massive exploration into chemical reaction space with unprecedented resolution with respect to the number of potentially relevant molecular structures has become possible. Various algorithmic advances have shown that such structural screenings must and can be automated and routinely carried out. This will replace the standard approach of manually studying a selected and restricted number of molecular structures for a chemical mechanism.
View Article and Find Full Text PDFDensity functional theory (DFT) is used to calculate the relative free energies of deprotonation of the isomers of iron-group hydride complexes MHXL where M = Fe, Ru, Os, L = (CO) or (PMeCHCHPMe) for a wide range of anionic ligands X. The free energies of the most stable isomers are used to calculate relative pK values where K refers to the acid dissociation constant for the equilibrium MHXL → [MXL] + H. These are used to test the proposal that the pK for a given metal complex in THF can be simply calculated by adding the contributions to the total pK value from each ligand L; these are called ligand acidity constants (LAC) A used in the LAC equation [R.
View Article and Find Full Text PDFWe present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2016
Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput.
View Article and Find Full Text PDFβ-sheet-encoded anionic and cationic dendritic peptide amphiphiles form supramolecular copolymers when self-assembled in a 1:1 feed ratio of the monomers. These ampholytic materials have been designed for on-off polymerization in response to pH triggers. The cooperative supramolecular self-assembly process is switched on at a physiologically relevant pH value and can be switched off by increasing or decreasing the pH value.
View Article and Find Full Text PDF