Adenosine-to-inosine (A-to-I) RNA editing displays diverse spatial patterns across different tissues. However, the human genome encodes only two catalytically active editing enzymes (ADAR1 and ADAR2), suggesting that other regulatory factors help shape the editing landscape. Here, we show that the splicing factor SRSF9 selectively controls the editing of many brain-specific sites in primates.
View Article and Find Full Text PDFThe hypothalamic-pituitary-adrenal axis provides physiological adaptations to various environmental stimuli in mammals. These stimuli including maternal care, diet, immune challenge, stress, and others have the potential to stably modify or program the functioning of the HPA axis when experienced early in life or at later critical stages of development. Epigenetic mechanisms mediate the biological embedding of environmental stimuli or conditions.
View Article and Find Full Text PDFEarly life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype.
View Article and Find Full Text PDFThe Infinium Human Methylation450 BeadChip Array (Infinium 450K) is a robust and cost-efficient survey of genome-wide DNA methylation patterns. Macaca fascicularis (Cynomolgus macaque) is an important disease model; however, its genome sequence is only recently published, and few tools exist to interrogate the molecular state of Cynomolgus macaque tissues. Although the Infinium 450K is a hybridization array designed to the human genome, the relative conservation between the macaque and human genomes makes its use in macaques feasible.
View Article and Find Full Text PDFIntegrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the complex interactions of inherited and environmental components that define the developmental origins of a range of disorders. The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment.
View Article and Find Full Text PDFDuring pregnancy, glucocorticoids transfer environmental signals to the growing brain and its associated neuroendocrine system to modulate their maturation and function during adolescence and adulthood. Increased in utero exposure to glucocorticoids is associated with impaired fetal growth resulting in low birth weight (LBW) and compromised neural development. The underlying molecular changes affecting brain development, however, are largely unknown.
View Article and Find Full Text PDFDeleted in liver cancer 1 (DLC1) is a multi-modular Rho-GTPase-activating protein (RhoGAP) and a tumor suppressor. Besides its RhoGAP domain, functions of other domains in DLC1 remain largely unknown. By protein precipitation and mass spectrometry, we identified eukaryotic elongation factor 1A1 (EF1A1) as a novel partner for the sterile alpha motif (SAM) domain of DLC1 but not the SAM domain of DLC2.
View Article and Find Full Text PDFMutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin) lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase.
View Article and Find Full Text PDFThe c-Cbl tyrosine kinase binding domain (Cbl-TKB), essentially an 'embedded' SH2 domain, has a critical role in targeting proteins for ubiquitination. To address how this domain can bind to disparate recognition mofits and to determine whether this results in variations in substrate-binding affinity, we compared crystal structures of the Cbl-TKB domain complexed with phosphorylated peptides of Sprouty2, Sprouty4, epidermal growth factor receptor, Syk, and c-Met receptors and validated the binding with point-mutational analyses using full-length proteins. An obligatory, intrapeptidyl H-bond between the phosphotyrosine and the conserved asparagine or adjacent arginine is essential for binding and orients the peptide into a positively charged pocket on c-Cbl.
View Article and Find Full Text PDFHuman Cayman ataxia and mouse or rat dystonia are linked to mutations in the genes ATCAY (Atcay) that encode BNIP-H or Caytaxin, a brain-specific member of the BNIP-2 family. To explore its possible role(s) in neuronal function, we used protein precipitation and matrix-assisted laser desorption/ionisation mass spectrometry and identified kidney-type glutaminase (KGA) as a novel partner of BNIP-H. KGA converts glutamine to glutamate, which could serve as an important source of neurotransmitter.
View Article and Find Full Text PDFJ Mol Med (Berl)
February 2004
Rett syndrome is a dominant neurological disorder caused by loss-of-function mutations of methyl-CpG-binding protein 2 (MeCP2). MeCP2 is an abundant chromatin-associated protein that contains two well characterized domains. Through an N-terminal domain it recognizes methyl-CpGs and binds to nonmethylated DNA.
View Article and Find Full Text PDF