While yeast surface display (YSD) has gained traction for antibody hit discovery efforts with the first therapeutic YSD-isolated antibody sintilimab approved in 2018, a major drawback that remains is the time-consuming reformatting of monoclonal antibody (mAb) candidates. By using a Golden Gate cloning (GGC)-dependent workflow, the bulk transfer of genetic information can be performed from antibody fragments displayed on yeast cells to a bidirectional mammalian expression vector. Herein, we describe in-depth protocols for the reformatting of mAbs, starting from the generation of Fab fragment libraries in YSD vectors and ending up with IgG molecules in bidirectional mammalian vectors in a consolidated two-pot, two-step procedure.
View Article and Find Full Text PDFTo construct a trispecific IgG-like antibody at least three different binding moieties need to be combined, which results in a complex architecture and challenging production of these molecules. Here we report for the first time the construction of trispecific natural killer cell engagers based on a previously reported two-in-one antibody combined with a novel anti-CD16a common light chain module identified by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibodies simultaneously target epidermal growth factor receptor (EGFR), programmed death-ligand 1 (PD-L1) and CD16a with two Fab fragments, resulting in specific cellular binding properties on EGFR/PD-L1 double positive tumor cells and a potent ADCC effect.
View Article and Find Full Text PDFThe Tyro, Axl, and MerTK receptors (TAMRs) play a significant role in the clearance of apoptotic cells. In this work, the spotlight was set on MerTK, as it is one of the prominent TAMRs expressed on the surface of macrophages and dendritic cells. MerTK-specific antibodies were previously isolated from a transgenic rat-derived immune library with suitable biophysical properties.
View Article and Find Full Text PDFYeast-surface display (YSD) is commonly applied to screen Fab immune or naïve libraries for binders of predefined target molecules. However, reformatting of isolated variants represents a time-intensive bottleneck. Herein, we present a novel approach to facilitate a lean transition from antibody screening using YSD Fab libraries to the production of full-length IgG antibodies in Expi293-F cells.
View Article and Find Full Text PDFChicken-derived antibodies emerged as a promising tool for diagnostic and therapeutic usage. Due to the phylogenetic distance between birds and mammals, chicken immunization campaigns with human antigens result in a chicken antibody (IgY) repertoire targeting epitopes not addressed by rodent-derived antibodies. However, this phylogenetic distance accounts for a low homology of IgY molecules to human antibodies, resulting in potential immunogenicity and thus excluding IgYs from therapeutic applications.
View Article and Find Full Text PDFYeast surface display (YSD) emerged as a prominent screening methodology for the isolation of monoclonal antibodies (mAbs) against various antigens. However, phage display remains the gold standard in cell panning-based screenings to isolate mAbs against difficult-to-screen targets, such as G-protein coupled receptors (GPCR) and ion channels. Herein we describe a step-by-step protocol to establish and perform the isolation of mAbs using YSD in a fluorescence-activated cell sorting (FACS)-assisted biopanning manner, yielding a variety of antibodies binding their antigen with high affinity in the natural environment of the cell.
View Article and Find Full Text PDFVarious formats of bispecific antibodies exist, among them Two-in-One antibodies in which each Fab arm can bind to two different antigens. Their IgG-like architecture accounts for low immunogenicity and also circumvents laborious engineering and purification steps to facilitate correct chain pairing. Here we report for the first time the identification of a Two-in-One antibody by yeast surface display (YSD) screening of chicken-derived immune libraries.
View Article and Find Full Text PDFIn recent years, targeted gene integration (TI) has been introduced as a strategy for the generation of recombinant mammalian cell lines for the production of biotherapeutics. Besides reducing the immense heterogeneity within a pool of recombinant transfectants, TI also aims at shortening the duration of the current cell line development process. Here we describe the generation of a host cell line carrying Matrix-Attachment Region (MAR)-rich landing pads (LPs), which allow for the simultaneous and site-specific integration of multiple genes of interest (GOIs).
View Article and Find Full Text PDFDue to the large evolutionary distance between birds (Aves) und humans, immunization of chickens with human proteins results in a strong response of the bird's adaptive immune system to proteins of mammalian origin. Additionally, chicken-derived antibodies display less undesired cross-reactivity in analytical setups than conventional rodent-derived antibodies. Due to these features as well as the facile amplification of antibody-coding genes, chicken-derived antibodies emerged as promising molecules for the immunotherapy and various biotechnological applications.
View Article and Find Full Text PDFBladder cancer is a frequent malignancy and has a clinical need for new therapeutic approaches. Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. Furthermore, mRNA-based pharmaceuticals recently reached the market and CAR-T cells and viral-based gene therapy remain a major focus of biomedical research.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) have demonstrated tremendous effects on the treatment of various disease indications and remain the fastest growing class of therapeutics. Production of recombinant antibodies is performed using mammalian expression systems to facilitate native antibody folding and post-translational modifications. Generally, mAb expression systems utilize co-transfection of heavy chain () and light chain () genes encoded on separate plasmids.
View Article and Find Full Text PDFNatural killer cell engagers gained enormous interest in recent years due to their potent anti-tumor activity and favorable safety profile. Simultaneously, chicken-derived antibodies entered clinical studies paving the way for avian-derived therapeutics. In this study, we describe the affinity maturation of a common light chain (cLC)-based, chicken-derived antibody targeting EGFR, followed by utilization of the same light chain for the isolation of CD16a- and PD-L1-specific monoclonal antibodies.
View Article and Find Full Text PDFBispecific (BsAb) and biparatopic (BpAb) antibodies emerged as promising formats for therapeutic biologics exhibiting tailor-made functional properties. Over recent years, chicken-derived antibodies have gained traction for diagnostic and therapeutic applications due to their broad epitope coverage and convenience of library generation. Here we report the first generation of a biparatopic common light chain (cLC) chicken-derived antibody by an epitope binning-based screening approach using yeast surface display.
View Article and Find Full Text PDFGeneration of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display.
View Article and Find Full Text PDFproduces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPI). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.
View Article and Find Full Text PDFThe phylogenetic distance between chickens and humans accounts for a strong immune response and a broader epitope coverage compared to rodent immunization approaches. Here the authors report the isolation of common light chain (cLC)-based chicken monoclonal antibodies from an anti-epidermal growth factor receptor (EGFR) immune library utilizing yeast surface display in combination with yeast biopanning and fluorescence-activated cell sorting (FACS). For the selection of high-affinity antibodies, a yeast cell library presenting cLC-comprising fragment antigen binding (Fab) fragments is panned against hEGFR-overexpressing A431 cells.
View Article and Find Full Text PDFMethods Mol Biol
December 2020
Fluorescence-activated cell sorting (FACS) in combination with yeast surface display has emerged as a vital tool for the isolation and engineering of antibodies and antibody-derived fragments from synthetic, naïve, and immune libraries. However, the generation of antibodies against certain human antigens from immunized animals, e.g.
View Article and Find Full Text PDFShedding of membrane-bound cell surface proteins, where the extracellular domain is released and found in the circulation is a common phenomenon. A prominent example is CEACAM5 (CEA, CD66e), where the shed domain plays a pivotal role in tumor progression and metastasis. For treatment of solid tumors, the presence of the tumor-specific antigen in the plasma can be problematic since tumor-specific antibodies might be intercepted by the soluble antigen before invading their desired tumor target area.
View Article and Find Full Text PDFTransglutaminase from Streptomyces mobaraensis (MTG) has become a powerful tool to covalently and highly specifically link functional amines to glutamine donor sites of therapeutic proteins. However, details regarding the mechanism of substrate recognition and interaction of the enzyme with proteinaceous substrates still remain mostly elusive. We have determined the crystal structure of the Streptomyces papain inhibitory protein (SPI ), a substrate of MTG, to study the influence of various substrate amino acids on positioning glutamine to the active site of MTG.
View Article and Find Full Text PDF