Rydberg atoms exhibit both remarkable sensitivity to electromagnetic fields making them promising candidates for revolutionizing field sensors and, unlike conventional antennas, they neither disturb the measured field nor necessitate extensive calibration procedures. In this study, we propose a receiver design for data-modulated signal reception near the 2.4 GHz Wi-Fi frequency band, harnessing the capabilities of warm Rydberg atoms.
View Article and Find Full Text PDFThe fractional Fourier transform (FrFT), a fundamental operation in physics that corresponds to a rotation of phase space by any angle, is also an indispensable tool employed in digital signal processing for noise reduction. Processing of optical signals in their time-frequency degree of freedom bypasses the digitization step and presents an opportunity to enhance many protocols in quantum and classical communication, sensing, and computing. In this Letter, we present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system with processing capabilities.
View Article and Find Full Text PDF