Many biologically important ligands of proteins are large, flexible, and in many cases charged molecules that bind to extended regions on the protein surface. It is infeasible or expensive to locate such ligands on proteins with standard methods such as docking or molecular dynamics (MD) simulation. The alternative approach proposed here is scanning of a spatial and angular grid around the protein with smaller fragments of the large ligand.
View Article and Find Full Text PDFBackground: Human Immunodeficiency Virus 1 enters host cells through interaction of its V3 loop (which is part of the gp120 protein) with the host cell receptor CD4 and one of two co-receptors, namely CCR5 or CXCR4. Entry inhibitors binding the CCR5 co-receptor can prevent viral entry. As these drugs are only available for CCR5-using viruses, accurate prediction of this so-called co-receptor tropism is important in order to ensure an effective personalized therapy.
View Article and Find Full Text PDF