Objectives: Patients with previously treated microsatellite instability-high (MSI-H)/mismatch repair deficient (dMMR) tumours have limited chemotherapeutic treatment options. Pembrolizumab received approval from the EMA in 2022 for the treatment of colorectal, endometrial, gastric, small intestine, and biliary MSI-H/dMMR tumour types. This approval was supported by data from the KEYNOTE-164 and KEYNOTE-158 clinical trials.
View Article and Find Full Text PDFCombining single-cell measurements of ERK activity dynamics with perturbations provides insights into the MAPK network topology. We built circuits consisting of an optogenetic actuator to activate MAPK signaling and an ERK biosensor to measure single-cell ERK dynamics. This allowed us to conduct RNAi screens to investigate the role of 50 MAPK proteins in ERK dynamics.
View Article and Find Full Text PDFPLoS Comput Biol
October 2020
The development of mechanistic models of biological systems is a central part of Systems Biology. One major challenge in developing these models is the accurate inference of model parameters. In recent years, nested sampling methods have gained increased attention in the Systems Biology community due to the fact that they are parallelizable and provide error estimates with no additional computations.
View Article and Find Full Text PDFStimulation of PC-12 cells with epidermal (EGF) versus nerve (NGF) growth factors (GFs) biases the distribution between transient and sustained single-cell ERK activity states, and between proliferation and differentiation fates within a cell population. We report that fibroblast GF (FGF2) evokes a distinct behavior that consists of a gradually changing population distribution of transient/sustained ERK signaling states in response to increasing inputs in a dose response. Temporally controlled GF perturbations of MAPK signaling dynamics applied using microfluidics reveal that this wider mix of ERK states emerges through the combination of an intracellular feedback, and competition of FGF2 binding to FGF receptors (FGFRs) and heparan sulfate proteoglycan (HSPG) co-receptors.
View Article and Find Full Text PDFThe chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME.
View Article and Find Full Text PDFBackground: With the advance of experimental techniques such as time-lapse fluorescence microscopy, the availability of single-cell trajectory data has vastly increased, and so has the demand for computational methods suitable for parameter inference with this type of data. Most of currently available methods treat single-cell trajectories independently, ignoring the mother-daughter relationships and the information provided by the population structure. However, this information is essential if a process of interest happens at cell division, or if it evolves slowly compared to the duration of the cell cycle.
View Article and Find Full Text PDF