Publications by authors named "Jan Meiser"

X-ray grating-based interferometry promises unique new diagnostic possibilities in medical imaging and materials analysis. To transfer this method from scientific laboratories or small-animal applications to clinical radiography applications, compact setups with a large field of view (FoV) are required. Currently the FoV is limited by the grating area, which is restricted due to the complex manufacturing process.

View Article and Find Full Text PDF

The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique.

View Article and Find Full Text PDF

The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer.

View Article and Find Full Text PDF

X-ray imaging using a Talbot-Lau interferometer, consisting of three binary gratings, is a well-established approach to acquire x-ray phase-contrast and dark-field images with a polychromatic source. However, challenges in the production of high aspect ratio gratings limit the construction of a compact setup for high x-ray energies. In this study we consider the use of phase gratings with triangular-shaped structures in an x-ray interferometer and show that such gratings can yield high visibilities for significantly shorter propagation distances than conventional gratings with binary structures.

View Article and Find Full Text PDF

To explore the future clinical potential of improved soft-tissue visibility with grating-based X-ray phase contrast (PC), we have developed a first preclinical computed tomography (CT) scanner featuring a rotating gantry. The main challenge in the transition from previous bench-top systems to a preclinical scanner are phase artifacts that are caused by minimal changes in the grating alignment during gantry rotation. In this paper, we present the first experimental results from the system together with an adaptive phase recovery method that corrects for these phase artifacts.

View Article and Find Full Text PDF