Based on the examination of the crystal structure of rat TRbeta complexed with 3,5,3'-triiodo-l-thyronine (2) a novel TRbeta-selective indole derivative 6b was prepared and tested in vitro. This compound was found to be 14 times selective for TRbeta over TRalpha in binding and its beta-selectivity could be rationalized through the comparison of the X-ray crystallographic structures of 6b complexed with TRalpha and TRbeta.
View Article and Find Full Text PDFA set of thyromimetics having improved selectivity for TR-beta1 were prepared by replacing the 3'-isopropyl group of 2 and 3 with substituents having increased steric bulk. From this limited SAR study, the most potent and selective compounds identified were derived from 2 and contained a 3'-phenyl moiety bearing small hydrophobic groups meta to the biphenyl link. X-ray crystal data of 15c complexed with TR-beta1 LBD shows methionine 442 to be displaced by the bulky R3' phenyl ethyl amide side chain.
View Article and Find Full Text PDFLiver X receptor beta (LXRbeta) is a ligand dependent transcription factor that is a member of the nuclear receptor superfamily. LXRbeta and its isoform LXRalpha have recently been recognized as important regulators of lipid homeostasis in vertebrates. N-terminally hexahistidine-tagged rat LXRbeta was expressed in Escherichia coli as a full-length protein and purified in two chromatographic steps, immobilized metal affinity chromatography and gel filtration.
View Article and Find Full Text PDFThe structures of the liver X receptor LXRbeta (NR1H2) have been determined in complexes with two synthetic ligands, T0901317 and GW3965, to 2.1 and 2.4 A, respectively.
View Article and Find Full Text PDFEndogenous thyroid receptor hormones 3,5,3',5'-tetraiodo-l-thyronine (T(4), 1) and 3,5,3'-triiodo-l-thyronine (T(3), 2) exert a significant effects on growth, development, and homeostasis in mammals. They regulate important genes in intestinal, skeletal, and cardiac muscles, the liver, and the central nervous system, influence overall metabolic rate, cholesterol and triglyceride levels, and heart rate, and affect mood and overall sense of well being. The literature suggests many or most effects of thyroid hormones on the heart, in particular on the heart rate and rhythm, are mediated through the TRalpha(1) isoform, while most actions of the hormones on the liver and other tissues are mediated more through the TRbeta(1) isoform of the receptor.
View Article and Find Full Text PDF