In this paper, we analytically derive closed-form expressions for the tangency portfolio weights: the fully invested portfolio that maximizes the expected return over the risk-free rate, relative to the volatility of the portfolio return. We explicitly derive this portfolio from a range of underlying return models and show examples where it coincides with different well-known smart beta products. Specifically, we find the closed-form expression for the tangency portfolio weights for a return model with compound symmetric correlation matrix.
View Article and Find Full Text PDFWe set up a game theoretic framework to analyze a wide range of situations from team sports. A fundamental idea is the concept of potential; the probability of the offense scoring the next goal minus the probability that the next goal is made by the defense. We develop categorical as well as continuous models, and obtain optimal strategies for both offense and defense.
View Article and Find Full Text PDFTo try to outperform an externally given benchmark with known weights is the most common equity mandate in the financial industry. For quantitative investors, this task is predominantly approached by optimizing their portfolios consecutively over short time horizons with one-period models. We seek in this paper to provide a theoretical justification to this practice when the underlying market is of Barndorff-Nielsen and Shephard type.
View Article and Find Full Text PDF