Publications by authors named "Jan Langkabel"

Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo.

View Article and Find Full Text PDF

Activating mutations in the human KIT receptor is known to drive severe hematopoietic disorders and tumor formation spanning various entities. The most common mutation is the substitution of aspartic acid at position 816 to valine (D816V), rendering the receptor constitutively active independent of ligand binding. As the role of the KIT receptor in placental signaling cascades is poorly understood, we analyzed the impact of KIT expression on placental development using a humanized mouse model.

View Article and Find Full Text PDF

Introduction: The first lineage separation in mammalian development occurs when totipotent cells of the zygote give rise to the inner cell mass and the trophectoderm. The lineages are strictly separated by an epigenetic barrier. In vitro derivatives of these lineages embryonic stem cells (ESC) and trophoblast stem cells (TSC) are used to study the requirements needed to overcome the barrier in ESC to TSC conversion approaches.

View Article and Find Full Text PDF

Cellular reprogramming converts differentiated cells into induced pluripotent stem cells (iPSCs). However, this process is typically very inefficient, complicating mechanistic studies. We identified and molecularly characterized rare, early intermediates poised to reprogram with up to 95% efficiency, without perturbing additional genes or pathways, during iPSC generation from mouse embryonic fibroblasts.

View Article and Find Full Text PDF