ACS Appl Mater Interfaces
October 2023
Among lithium-sulfur (Li-S) battery materials, sulfurized polyacrylonitrile (SPAN) has attracted substantial attention as a cathode material owing to its potential to bypass the problematic polysulfide formation and shuttling effect. Carbonate-based electrolytes have been eschewed compared with ether-based electrolytes because of their poor compatibility with Li metal anodes. In this work, we design and study an electrolyte comprising 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2022
Rechargeable Zn metal batteries (RZMBs) may provide a more sustainable and lower-cost alternative to established battery technologies in meeting energy storage applications of the future. However, the most promising electrolytes for RZMBs are generally aqueous and require high concentrations of salt(s) to bring efficiencies toward commercially viable levels and mitigate water-originated parasitic reactions including hydrogen evolution and corrosion. Electrolytes based on nonaqueous solvents are promising for avoiding these issues, but full cell performance demonstrations with solvents other than water have been very limited.
View Article and Find Full Text PDFEvidence is presented that a "three-for-one" process based on two cross-relaxations between Pr ions efficiently populates the mid-infrared-emitting H manifold in a Pr-doped low-maximum-phonon-energy host. The concentration dependence of infrared fluorescence spectra and lifetimes of polycrystalline Pr:KPbCl initially excited to the F manifolds indicate that the 3500-5500-nm fluorescence becomes strongly favored over shorter-wavelength infrared emission bands in the higher-concentration sample. The strong concentration dependence of the F and H manifold lifetimes suggests that both of these decay by cross-relaxation processes, resulting in more than one ion excited to H for each ion initially excited to F.
View Article and Find Full Text PDFSpinel-structured solids were studied to understand if fast Li ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a "Li-stuffed" spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte-cathode composites. Materials of composition LiM(III)TiO, M(III) = Cr or Al were prepared through solid-state methods.
View Article and Find Full Text PDFA homologous series of lithium alkyl mono- and dicarbonate salts was synthesized as model reference compounds for the frequently proposed components constituting the electrolyte/electrode interface in Li-ion batteries. The physicochemical characterization of these reference compounds in the bulk state using thermal analyses and X-ray photoelectron, nuclear magnetic resonance, and Fourier transform infrared spectroscopies establishes a reliable database of comparison for the studies on the surface chemistry of electrodes harvested from Li-ion cells.
View Article and Find Full Text PDF