Immunophenotypic characterization of leukemic cells with the use of flow cytometry (FC) is a fundamental tool in acute lymphoblastic leukemia (ALL) diagnostics. A variety of genetic aberrations underlie specific B-cell precursor ALL (BCP-ALL) subtypes and their identification is of great importance for risk group stratification. These aberrations include: fusion gene, Philadelphia chromosome ( fusion gene), rearrangements of the , fusion gene and changes in chromosome number (hyperdiploidy and hypodiploidy).
View Article and Find Full Text PDFFlow cytometry (FCM) is a precise and well-established tool to assess the minimal residual disease (MRD) level in childhood acute lymphoblastic leukemia (ALL). It is crucial to distinguish leukemic cells from their normal counterparts; thus new markers should be evaluated, to increase the accuracy of the analysis. The expression of CD73 on blast cells was measured and compared at the day of diagnosis and at days 15 and 33 of treatment.
View Article and Find Full Text PDFFlow cytometry technique (FC) is a standard diagnostic tool for diagnostics of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) assessing the immunophenotype of blast cells. BCP-ALL is often associated with underlying genetic aberrations, that have evidenced prognostic significance and can impact the disease outcome. Since the determination of patient prognosis is already important at the initial phase of BCP-ALL diagnostics, we aimed to reveal specific genetic aberrations by finding specific multiple antigen expression patterns with FC immunophenotyping.
View Article and Find Full Text PDFObjective interpretation of FC results may still be hampered by limited technical standardization. The EuroFlow consortium conducted a series of experiments to determine the impact of different variables on the relative distribution and the median fluorescence intensity (MFI) of markers stained on different cell populations, from both healthy donors and patients' samples with distinct hematological malignancies. The use of different anticoagulants; the time interval between sample collection, preparation, and acquisition; pH of washing buffers; and the use of cell surface membrane-only (SM) vs.
View Article and Find Full Text PDFThe standardized EuroFlow protocol, including CD19 as primary B-cell marker, enables highly sensitive and reliable minimal residual disease (MRD) assessment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients treated with chemotherapy. We developed and validated an alternative gating strategy allowing reliable MRD analysis in BCP-ALL patients treated with CD19-targeting therapies. Concordant data were obtained in 92% of targeted therapy patients who remained CD19-positive, whereas this was 81% in patients that became (partially) CD19-negative.
View Article and Find Full Text PDFThe aim of this study was to assess the incidence of DNA aneuploidy in Polish children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and the relationship between aneuploidy and immunological phenotype, age, leukocyte count, S-phase fraction (SPF) and early response to induction chemotherapy assessed by the percentage of residual blast cells in bone marrow aspirates. The study group consisted of 267 patients. DNA content and immunophenotype were assessed in the bone marrow before treatment using multicolor flow cytometry (FC).
View Article and Find Full Text PDFThe most common applications of flow cytometry (FC) include diagnostics of haemato-oncological disorders, based on analysis of bone marrow, peripheral blood (PB), or cerebrospinal fluid (CSF) samples. A proper diagnostic process requires standardisation in setting the optimal time frame between material collection and the assay. Unfortunately, this might be difficult to achieve in daily practice due to unintended shipment delays, which might compromise large-scale multicentre studies.
View Article and Find Full Text PDF