We study the interaction and metalation reaction of a free base 5,10,15,20-terakis(4-cyanophenyl)porphyrin (2HTCNPP) with post-deposited Zn atoms and the targeted reaction product Zn-5,10,15,20-terakis(4-cyanophenyl)porphyrin (ZnTCNPP) on a Ag(111) surface. The investigations are performed with scanning tunneling microscopy at room temperature after Zn deposition and subsequent heating. The goal is to obtain further insights in the metalation reaction and the influence of the cyanogroups on this reaction.
View Article and Find Full Text PDFWe investigated the adsorption of three related cyano-functionalized tetraphenyl porphyrin derivatives on Cu(111) by scanning tunneling microscopy (STM) in ultra-high vacuum (UHV) with the goal to identify the role of the cyano group and the central Cu atom for the intermolecular and supramolecular arrangement. The porphyrin derivatives studied were Cu-TCNPP, Cu-cisDCNPP, and 2H-cisDCNPP, that is, Cu-5,10,15,20-tetrakis-(p-cyano)-phenylporphyrin, Cu-meso-cis-di(p-cyano)-phenylporphyrin and 2H-meso-cis-di(p-cyano)-phenylporphyrin, respectively. Starting from different structures obtained after deposition at room temperature, all three molecules form the same long-range ordered hexagonal honeycomb-type structure with triangular pores and three molecules per unit cell.
View Article and Find Full Text PDFThe adsorption behavior and the mobility of 2H-Tetranaphthylporphyrin (2HTNP) on Cu(111) was investigated by scanning tunneling microscopy (STM) at room temperature (RT). The molecules adsorb, like the structurally related 2HTPP, in the "inverted" structure with the naphthyl plane restricted to an orientation parallel to the Cu surface. The orientation of the four naphthyl groups yields altogether 16 possible conformations.
View Article and Find Full Text PDFWe investigated the metalation and coordination reactions of Co with 2H-5,15-bis(para-cyanophenyl)-10,20-bisphenylporphyrin (2HtransDCNPP) on a Ag(111) surface by scanning tunneling microscopy. At room temperature (RT), 2HtransDCNPPs self-assemble into a supramolecular structure stabilized by intermolecular hydrogen bonding. The metalation of 2HtransDCNPP is achieved either by depositing Co atoms onto the supramolecular structure at RT, or, alternatively, by depositing the molecules onto a submonolayer Co-precovered Ag(111) surface with a subsequent heating to 500 K.
View Article and Find Full Text PDF